Skip to main content
Log in

Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigate the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asaro, R.J., Tiller, W.A.: Interface morphology development during stress corrosion cracking: part I. Via surface diffusion. Metall. Trans. 3(7), 1789–1796 (1972)

    Article  Google Scholar 

  2. Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65(3), 301–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Axelsson, O., Neytcheva, M.: Operator splitting for solving nonlinear, coupled multiphysics problems with application to numerical solution of an interface problem. TR2011-009 Institute for Information Technology, Uppsala University (2011)

  4. Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algorithms 62(4), 655–675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baňas, L., Nürnberg, R.: A multigrid method for the Cahn–Hilliard equation with obstacle potential. Appl. Math. Comput. 213(2), 290–303 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42(2), 773–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203(1), 321–343 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26(1), 20–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy part I: mathematical analysis. Eur. J. Appl. Math. 2(3), 233–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imaging Sci. 7(1), 67–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)

    Article  MathSciNet  Google Scholar 

  18. Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn–Hilliard systems. Comput. Math. Appl. 67(1), 106–121 (2014)

    Article  MathSciNet  Google Scholar 

  20. Brandt, A., Dinar, N.: Multi-grid solutions to elliptic flow problems. Numerical Methods for Partial Differential Equations, pp. 53–147 (1979)

  21. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)

    MATH  Google Scholar 

  22. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (2004)

    Article  Google Scholar 

  23. Chen, C.M., Thomée, V.: The lumped mass finite element method for a parabolic problem. J. Aust. Math. Soc. Ser. B Appl. Math. 26(03), 329–354 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009)

  25. Chen, L.: Multigrid methods for constrained minimization problems and application to saddle point problems. Submitted (2014)

  26. Chen, L.: Multigrid methods for saddle point systems using constrained smoothers. Comput. Math. Appl. 70(12), 2854–2866 (2015)

    Article  MathSciNet  Google Scholar 

  27. Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math. Comput. 18(1–2), 113–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Christon, M.A.: The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Eng. 173(1), 147–166 (1999)

    Article  MATH  Google Scholar 

  29. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, pp. 35–73. Springer (1989)

  31. Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58(198), 603–630 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Feng, X., Karakashian, O.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw problem. J. Comput. Math. 26(6), 767–796 (2008)

    MathSciNet  Google Scholar 

  38. Fried, I.: Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices. Int. J. Solids Struct. 9(9), 1013–1034 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  39. Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87(4), 675–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gaspar, F.J., Lisbona, F.J., Oosterlee, C.W., Wienands, R.: A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Numer. Linear Algebra Appl. 11(2–3), 93–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gräser, C., Kornhuber, R.: On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI, Volume 55 of Lecture Notes in Computational Science Engineering, pp. 91–102. Springer, Berlin (2007)

  42. Greer, J.B., Bertozzi, A.L.: \({H}^{1}\) solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10(1/2), 349–366 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Gresho, P.M., Lee, R.L., Sani, R.L.: Advection-dominated flows, with emphasis on the consequences of mass lumping. Finite Elem. Fluids 1, 335–350 (1978)

    MATH  Google Scholar 

  44. He, Y., Liu, Y.: Stability and convergence of the spectral Galerkin method for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Equ. 24(6), 1485–1500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image processing. SIAM J. Sci. Comput. 27(3), 831–849 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hinton, E., Rock, T., Zienkiewicz, O.C.: A note on mass lumping and related processes in the finite element method. Earthq. Eng. Struct. Dyn. 4(3), 245–249 (1976)

    Article  Google Scholar 

  47. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212(1), 288–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. King, B.B., Stein, O., Winkler, M.: A fourth-order parabolic equation modeling epitaxial thin film growth. J. Math. Anal. Appl. 286(2), 459–490 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lass, O., Vallejos, M., Borzi, A., Douglas, C.C.: Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems. Computing 84(1–2), 27–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mullen, R., Belytschko, T.: Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J. Numer. Methods Eng. 18(1), 11–29 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  52. Niclasen, D.A., Blackburn, H.M.: A comparison of mass lumping techniques for the two-dimensional Navier–Stokes equations.pdf. In: Twelfth Australasian Fluid Mechanics Conference, pp. 731–734. The Univesity of Sydney (1995)

  53. Olshanskii, M.A., Reusken, A.: Navier–Stokes equations in rotation form: a robust multigrid solver for the velocity problem. SIAM J. Sci. Comput. 23(5), 1683–1706 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Quarteroni, A.: On mixed methods for fourth-order problems. Comput. Methods Appl. Mech. Eng. 24(1), 13–34 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. Schöberl, J.: Multigrid methods for a parameter dependent problem in primal variables. Numer. Math. 84, 97–119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun, Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation. Math. Comput. 64(212), 1463–1471 (1995)

    MathSciNet  MATH  Google Scholar 

  57. Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci. 14(3), 131–141 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton Univeristy Press, Princeton (2005)

    MATH  Google Scholar 

  59. Ushijima, T.: On the uniform convergence for the lumped mass approximation of the heat equation. J. Fac. Sci. Univ. Tokyo 24, 477–490 (1977)

    MathSciNet  MATH  Google Scholar 

  60. Ushijima, T.: Error estimates for the lumped mass approximation of the heat equation. Mem. Numer. Math. 6, 65–82 (1979)

    MathSciNet  MATH  Google Scholar 

  61. Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang, M., Chen, L.: Multigrid methods for the stokes equations using distributive Gauss–Seidel relaxations based on the least squares commutator. J. Sci. Comput. 56(2), 409–431 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wittum, G.: Multigrid methods for Stokes and Navier–Stokes eqautions with transforming smoothers: algorithms and numerical results. Numer. Math. 54(5), 543–563 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  65. Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ye, X., Cheng, X.: The Fourier spectral method for the Cahn–Hilliard equations. Numer. Math. 171(1), 345–357 (2005)

    MathSciNet  MATH  Google Scholar 

  67. Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

B. Zheng would like to acknowledge the support by NSF Grant DMS-0807811 and a Laboratory Directed Research and Development (LDRD) Program from Pacific Northwest National Laboratory. L.P. Chen was supported by the National Natural Science Foundation of China under Grant No. 11501473. L. Chen was supported by NSF Grant DMS-1418934 and in part by NIH Grant P50GM76516. R.H. Nochetto was supported by NSF under Grants DMS-1109325 and DMS-1411808. J. Xu was supported by NSF Grant DMS-1522615 and in part by US Department of Energy Grant DE-SC0014400. Computations were performed using the computational resources of Pacific Northwest National Laboratory (PNNL) Institutional Computing cluster systems. The PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Chen, L., Hu, X. et al. Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems. J Sci Comput 69, 201–226 (2016). https://doi.org/10.1007/s10915-016-0189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0189-6

Keywords

Navigation