Skip to main content
Log in

Modelling of Biological Decontamination of a Water Resource in Natural Environment and Related Feedback Strategies

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We show how to combine numerical schemes and calibration of systems of o.d.e. to provide efficient feedback strategies for the biological decontamination of water resources. For natural resources, we retain to introduce any bacteria in the resource and treat it aside preserving a constant volume of the resource at any time. The feedback strategies are derived from the minimal time synthesis of the system of o.d.e.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For the sake of simplicity, we assume that the pollution is driven by a 2D flow (at the surface of the water resource).

  2. In the case where the viscosity coefficient \(\nu _{S}\) is zero (or very small), these boundary conditions are equivalent (or similar).

References

  1. Alford, J.: Bioprocess control: advances and challenges. Comput. Chem. Eng. 30, 1464–1475 (2006)

    Article  Google Scholar 

  2. Banga, J., Balsa-Canto, E., Moles, C., Alonso, A.: Dynamic optimization of bioreactors: a review. Proc. Indian Acad. Sci. 69, 257–265 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Danskin, J.M.: The theory of max–min, with applications. SIAM J. Appl. Math. 14, 641–664 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. D’Ans, G., Gottlieb, D., Kokotovic, P.: Optimal control of bacterial growth. Automatica 8, 729–736 (1972)

    Article  MATH  Google Scholar 

  5. Estrada, V., Parodi, E.R., Diaz, M.S.: Addressing the control problem of algae growth in water reservoirs with advanced dynamic optimization approaches. Comput. Chem. Eng. 33, 2063–2074 (2009)

    Article  Google Scholar 

  6. Gajardo, P., Harmand, J., Rapaport, A.: Minimal time bioremediation of natural water resources. Automatica 47(8), 6–6 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gajardo, P., Ramirez, H., Riquelme, V., Rapaport, A.: Bioremediation of natural water resources via optimal control techniques. In: Mondaini, R. (Eds.), BIOMAT 2011: International Symposium on Mathematical and Computational Biology, pp. 178–190. World Scientific (2012)

  8. Gulati, R.D., van Donk, E.: Lakes in the netherlands, their origin, eutrophication and restoration: state of the art reviews. Hydrobiologia 478, 73–106 (2002)

    Article  Google Scholar 

  9. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

  10. Kittisupakorn, P., Hussain, M.: Comparison of optimisation based control techniques for the control of a cstr. Int. J. Comput. Appl. Technol. 13(3–5), 178–184 (2000)

    Article  Google Scholar 

  11. Kokotovic, P., D’Ans, G., Gottlieb, D.: Time-optimal control for a model of bacterial growth. J. Optim. Theory Appl. 7, 61–69 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ravindran, S.S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 34(5), 425–448 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ramirez, H., Rapaport, A., Riquelme, V.: Optimal feedback synthesis and minimal time function for the bioremediation of water resources with two patches. Preprint hal-01069581 https://hal.archives-ouvertes.fr/hal-01069581 (2015)

  14. Sondergaard, M., Jeppesen, E., Lauridsen, T.L., Skov, C., van Nes, E.H., Roijackers, R., Lammens, E., Portielje, R.: Lake restoration: successes, failures and long term effects. J. Appl. Ecol. 44, 1095–1105 (2007)

    Article  Google Scholar 

  15. Soukkou, A., Khellaf, A., Leulmi, S., Boudeghdegh, K.: Optimal control of a cstr process. Braz. J. Chem. Eng 25(4), 799–812 (2008)

    Article  Google Scholar 

  16. Spitzer, D.: Maximization of steady-state bacterial production in a chemostat with pH and substrate control. Biotechnol. Bioeng. 18(2), 167–178 (2004)

    Article  Google Scholar 

  17. Smith, H.L., Waltman, P.: The theory of the chemostat. In: Cannings, C., Hoppensteadt, F. C., Segel, L. A. (eds.) Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995)

  18. Temam, R.: Navier–Stokes equations. Theory and numerical analysis. AMS Chelsea Publishing, Providence, RI. Reprint of the 1984 edition (2001)

Download references

Acknowledgments

The authors were supported by the research programs LEFE-INSU CoCoA, LabEx NUMEV and Inria associated team DYMECOS. The authors also want to thank Vincent Guinot and Jérôme Harmand for fruitful discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rousseau.

Appendix 1: Links Between PDE and ODE Models

Appendix 1: Links Between PDE and ODE Models

In this appendix we start from the transport-diffusion equation (2.5) and justify the simplified equations (2.1c) and (2.1d). Let us recall Eq.  (2.5):

$$\begin{aligned} \displaystyle \frac{\partial {S_{L}}}{\partial t } + \mathbf{U}\cdot \nabla S_{L}-\nu _{S}\Delta S_{L}= 0. \end{aligned}$$
(5.1)

We define the averaged pollutant concentration over the domain:

$$\begin{aligned} \overline{S_{L}}(t) = \displaystyle \frac{1}{|\Omega |}\int _{\Omega } S_{L}(t,x,y)\,dxdy. \end{aligned}$$
(5.2)

Integrating Eq. (5.1) over the whole domain \(\Omega \), we have:

$$\begin{aligned} \displaystyle \frac{d {\overline{S_{L}}}}{d t }+\displaystyle \frac{1}{|\Omega |}\int _{\Omega } \mathbf{U}(t,x,y)\cdot \nabla S_{L}(t,x,y)\,dxdy -\displaystyle \frac{\nu _{S}}{|\Omega |}\int _{\Omega } \Delta S_{L}(t,x,y)\,dxdy = 0. \end{aligned}$$

Thanks to the free divergence of \(\mathbf{U}\) and to boundary conditions (2.8), (2.9) and (2.10), we obtain:

$$\begin{aligned} \displaystyle \frac{d {\overline{S_{L}}}}{d t }-\displaystyle \frac{1}{|\Omega |}\int _{\Gamma _{in}}\displaystyle \frac{Q\,S_{L}}{|\Gamma _{in}|}\, ds+\displaystyle \frac{1}{|\Omega |}\int _{\Gamma _{out}}\displaystyle \frac{Q\,S_{L}}{|\Gamma _{out}|}\,ds-\displaystyle \frac{\nu _{S}}{|\Omega |}\int _{\Gamma _{in}} \displaystyle \frac{\partial {S_{L}}}{\partial n }\,ds=0, \end{aligned}$$

where n classically denotes the outward-pointing vector normal to \(\Omega \) on \(\partial \Omega \).

We now replace the boundary condition (2.8a) on \(\Gamma _{in}\) by the following Robin conditionFootnote 2:

$$\begin{aligned} -\nu _{S} \displaystyle \frac{\partial {S_{L}}}{\partial n }=\displaystyle \frac{Q}{|\Gamma _{in}|}(S_{L}-S_{in}), \end{aligned}$$
(5.3)

and obtain:

$$\begin{aligned} \displaystyle \frac{d {\overline{S_{L}}}}{d t }-\displaystyle \frac{Q}{|\Omega |}S_{in}+\displaystyle \frac{Q}{|\Omega |\,|\Gamma _{out}|}\int _{\Gamma _{out}}S_{L}\,ds=0. \end{aligned}$$

Now, assuming that the average concentration close to \(\Gamma _{out}\) is the same as the average concentration in the whole domain (in particular this is true if one assumes that \(S_{L}\) does not depend on space), then we have:

$$\begin{aligned} \displaystyle \frac{d {\overline{S_{L}}}}{d t }=\displaystyle \frac{Q}{|\Omega |}(S_{in}-\overline{S_{L}}), \end{aligned}$$
(5.4)

which is exactly the one zone model.

Now, if we consider (as it can be inferred from Fig. 2) that we have two zones in the lake (the blue one \(\Omega _{1}\) and the red one \(\Omega _{2}\)) separated by an interface \(\Gamma _{1/2}\) on which we have \(\mathbf{U}\cdot n_{1}=0\) where \(n_{1}\) is the outward-pointing vector normal to \(\Omega _{1}\) on \(\Gamma _{1/2}\), we can restart from Eq. (5.1) but integrate it over the active (blue) zone \(\Omega _{1}\) only, and obtain after the same kind of computation:

$$\begin{aligned} \displaystyle \frac{d {S_{1}}}{d t }-\displaystyle \frac{Q}{|\Omega _{1}|}S_{in}+\displaystyle \frac{Q}{|\Omega _{1}|\,|\Gamma _{out}|}\int _{\Gamma _{out}}S_{L}\, ds-\displaystyle \frac{\nu _{S}}{|\Omega _{1}|}\int _{\Gamma _{1/2}} \displaystyle \frac{\partial {S_{L}}}{\partial n_1 }\,ds=0, \end{aligned}$$

where \(S_{1}\) is the averaged pollutant concentration in the active zone \(\Omega _{1}\):

$$\begin{aligned} S_{1}(t) = \displaystyle \frac{1}{|\Omega _{1}|}\int _{\Omega _{1}} S_{L}(t,x,y)\,dxdy. \end{aligned}$$
(5.5)

Assuming again than the average concentration close to \(\Gamma _{out}\) is the same as the average concentration in \(\Omega _{1}\), we have:

$$\begin{aligned} \displaystyle \frac{d {S_{1}}}{d t } = \displaystyle \frac{Q}{|\Omega _{1}|}(S_{in}-S_{1}) +\displaystyle \frac{\nu _{S}}{|\Omega _{1}|}\int _{\Gamma _{1/2}} \displaystyle \frac{\partial {S_{L}}}{\partial n_1 }\,ds, \end{aligned}$$
(5.6)

Considering now the dead zone \(\Omega _{2}\) with the outward-pointing vector normal \(n_{2}=-n_{1}\) on \(\Gamma _{1/2}\), the same computations lead to:

$$\begin{aligned} \displaystyle \frac{d {S_{2}}}{d t } = \displaystyle \frac{\nu _{S}}{|\Omega _{2}|}\int _{\Gamma _{2/1}} \displaystyle \frac{\partial {S_{L}}}{\partial n_2 }\,ds, \end{aligned}$$
(5.7)

with

$$\begin{aligned} S_{2}(t) = \displaystyle \frac{1}{|\Omega _{2}|}\int _{\Omega _{2}} S_{L}(t,x,y)\,dxdy. \end{aligned}$$
(5.8)

We now consider that the integral of the normal derivative of \(S_{L}\) along the interface \(\Gamma _{1/2}\) scales like \(S_{2}-S_{1}\), that is there exists a positive constant K such that

$$\begin{aligned} \int _{\Gamma _{1/2}} \displaystyle \frac{\partial {S_{L}}}{\partial n_1 }\,ds=K\,(S_{2}-S_{1}). \end{aligned}$$
(5.9)

Finally, considering Eqs. (5.6) and (5.7) in which the integral is replaced by the above approximation, we indeed obtain the two ODEs (2.1c) and (2.1d).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbier, S., Rapaport, A. & Rousseau, A. Modelling of Biological Decontamination of a Water Resource in Natural Environment and Related Feedback Strategies. J Sci Comput 68, 1267–1280 (2016). https://doi.org/10.1007/s10915-016-0178-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0178-9

Keywords

Mathematics Subject Classifications

Navigation