Skip to main content
Log in

Theoretical and Numerical Investigation of the Finite Cell Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a detailed analysis of the convergence properties of the finite cell method which is a fictitious domain approach based on high order finite elements. It is proved that exponential type of convergence can be obtained by the finite cell method for Laplace and Lamé problems in one, two as well as three dimensions. Several numerical examples in one and two dimensions including a well-known benchmark problem from linear elasticity confirm the results of the mathematical analysis of the finite cell method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The operator of extension by \(0\) from \(V'(\Omega )\) into \(H^{-1}(\mathcal {D})\) has to be understood as the dual of the restriction operator from \(H^1_0(\mathcal {D})\) onto \(V(\Omega )\).

  2. Let \({\hat{I}}=(-1,1)\) be the reference segment. Tensor \(H^1\)-norms are defined as follows in dimension \(n=2\) and \(n=3\):

    $$\begin{aligned} \Vert u\Vert \left. \right. _{H^{1,1}({\hat{I}}^2)}^2 \!=\! \sum _{\alpha _1=0}^1\sum _{\alpha _2=0}^1 \Vert \partial _{x_1}^{\alpha _1}\partial _{x_2}^{\alpha _2} u\Vert \left. \right. _{L^2({\hat{I}}^2)}^2 \quad \text{ and }\quad \Vert u\Vert \left. \right. _{H^{1,1,1}({\hat{I}}^3)}^2 = \sum _{\alpha _1=0}^1\sum _{\alpha _2=0}^1\sum _{\alpha _3=0}^1 \Vert \partial _{x_1}^{\alpha _1}\partial _{x_2}^{\alpha _2}\partial _{x_3}^{\alpha _3} u\Vert \left. \right. _{L^2({\hat{I}}^3)}^2. \end{aligned}$$

References

  1. Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., Rank, E.: The Finite Cell Method for Elasto-Plastic Problems. Proceedings of the tenth international conference on computational structures technology. civil-comp press, (2010)

  2. Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., Rank, E.: Performance of different integration schemes in facing discontinuites in the finite cell method. Int. J. Comput. Method 10, 1350002/1–1350002/24 (2013)

    Article  Google Scholar 

  3. Abedian, A., Parvizian, J., Düster, A., Rank, E.: The finite cell method for the J\(_2\) flow theory of plasticity. Finite Elem. Anal. Des. 69, 37–47 (2013)

    Article  Google Scholar 

  4. Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal. 19, 172–203 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. II. The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal. 20, 763–781 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babuška, I., Guo, B.: Approximation properties of the \(h\)-\(p\) version of the finite element method. Comput. Methods Appl. Mech. Engrg. 133, 319–346 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babuška, I., Suri, M.: The \(p\) and \(h\)-\(p\) versions of the finite element method, basic principles and properties. SIAM Rev. 36, 578–632 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  9. Chernov, A., von Petersdorff, T., Schwab, C.: Exponential convergence of \(hp\) quadrature for integral operators with Gevrey kernels. ESAIM Math. Model. Numer. Anal. 45, 387–422 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978). Studies in Mathematics and its Applications, Vol. 4

    MATH  Google Scholar 

  11. Costabel, M., Dauge, M., Nicaise, S.: Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22, 1250015–1250063 (2012)

    Article  MathSciNet  Google Scholar 

  12. Costabel, M., Dauge, M., Nicaise, S.: Weighted analytic regularity in polyhedra. Comput. Math. Appl. 67, 807–817 (2014)

    Article  MathSciNet  Google Scholar 

  13. Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of \(hp\)-FEM for Maxwell equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15, 575–622 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Duczek, S., Joulaian, M., Düster, A., Gabbert, U.: Simulation of Lamb Waves Using the Spectral Cell Method. SPIE smart structures and materials + nondestructive evaluation and health monitoring, vol. 86951U. International Society for Optics and Photonics, USA (2013)

    Google Scholar 

  15. Duczek, S., Joulaian, M., Düster, A., Gabbert, U.: Numerical analysis of Lamb waves using the finite and spectral cell method. Int. J. Numer. Methods Eng. 99, 26–53 (2014)

    Article  Google Scholar 

  16. Düster, A., Bröker, H., Rank, E.: The p-version of the finite element method for three-dimensional curved thin walled structures. Int. J. Numer. Methods Eng. 52, 673–703 (2001)

    Article  MATH  Google Scholar 

  17. Düster, A., Niggl, A., Rank, E.: Applying the \(hp\)-\(d\) version of the FEM to locally enhance dimensionally reduced models. Comput. Methods Appl. Mech. Eng. 196, 3524–3533 (2007)

    Article  MATH  Google Scholar 

  18. Düster, A., Parvizian, J., Rank, E.: Topology optimization based on the finite cell method. Proc. Appl. Math. Mech. 10, 151–152 (2010)

    Article  Google Scholar 

  19. Düster, A., Parvizian, J., Yang, Z., Rank, E.: The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2008)

    Article  MATH  Google Scholar 

  20. Düster, A., Rank, E.: Die Finite Cell Methode—Eine Fictitious Domain Methode mit Finite-Element Ansätzen hoher Ordnung. GAMM Rundbrief 2, 6–13 (2011)

    Google Scholar 

  21. Düster, A., Sehlhorst, H.-G., Rank, E.: Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput. Mech. 50, 413–431 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Glowinski, R., Kuznetsov, Y.: Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 1498–1506 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Glowinski, R., Pan, T.-W., Périaux, J.: A Least Squares/Fictitious Domain Method for Mixed Problems and Neumann Problems. Boundary value problems for partial differential equations and applications, vol. 29 of RMA Res. Notes Appl. Math. Masson, Paris (1993)

    Google Scholar 

  24. Glowinski, R., Pan, T.-W., Périaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111, 283–303 (1994)

    Article  MATH  Google Scholar 

  25. Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \({\mathbf{R}}^3\). I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinburgh Sect. A 127, 77–126 (1997)

    Article  MATH  Google Scholar 

  26. Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \({\mathbf{R}}^3\). II. Regularity in neighbourhoods of edges. Proc. R. Soc. Edinburgh Sect. A 127, 517–545 (1997)

    Article  MATH  Google Scholar 

  27. Guo, B.Q.: The \(h\)-\(p\) version of the finite element method for elliptic equations of order \(2m\). Numer. Math. 53, 199–224 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements. NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Joulaian, M., Duczek, S., Gabbert, U., Düster, A.: Finite and spectral cell method for wave propagation in heterogeneous materials. Comput. Mech. 54, 661–675 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Joulaian, M., Düster, A.: Local enrichment of the finite cell method for problems with material interfaces. Comput. Mech. 52, 741–762 (2013)

    Article  MATH  Google Scholar 

  31. Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng. 96, 512–528 (2013)

    Article  Google Scholar 

  32. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  33. Parvizian, J., Düster, A., Rank, E.: Finite cell method h- and p-extension for embedded domain problems in solid mechanics. Comput. Mech. 41, 121–133 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Parvizian, J., Düster, A., Rank, E.: Topology optimization using the finite cell method. Optim. Eng. 13, 57–78 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rank, E.: Adaptive remeshing and h-p domain decomposition. Comput. Methods Appl. Mech. Eng. 101, 299–313 (1992)

    Article  MATH  Google Scholar 

  36. Rank, E., Kollmannsberger, S., Sorger, C., Düster, A.: Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput. Methods Appl. Mech. Eng. 200, 3200–3209 (2011)

    Article  MATH  Google Scholar 

  37. Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., Düster, A.: Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng. 249–252, 104–115 (2012)

    Article  Google Scholar 

  38. Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., Rank, E.: Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Methods Eng. 95, 811–846 (2013)

    Article  MathSciNet  Google Scholar 

  39. Saul’ev, V.K.: A method for automatization of the solution of boundary value problems on high performance computers. Dokl. Akad. Nauk SSSR 144: 497–500 (in Russian). English translation in Soviet Math. Dokl. 3(1963), 763–766 (1962)

  40. Saul’ev, V.K.: On solution of some boundary value problems on high performance computers by fictitious domain method. Siberian Math. J. 4, 912–925 (1963)

    MathSciNet  Google Scholar 

  41. Schillinger, D., Düster, A., Rank, E.: The \(hp\)-\(d\)-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int. J. Numer. Methods Eng. 89, 1171–1202 (2012)

    Article  MATH  Google Scholar 

  42. Schillinger, D., Rank, E.: An unfitted \(hp\) adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200, 3358–3380 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Schillinger, D., Ruess, M., Zander, N., Bazilevs, Y., Düster, A., Rank, E.: Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput. Mech. 50, 445–478 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Schwab, C.: p- and hp-Finite Element Methods, Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  45. Stein, E. (ed.): Error-Controlled Adaptive Finite Elements in Solid Mechanics. Wiley, New York (2002)

    Google Scholar 

  46. Strang, G.: Variational Crimes in the Finite Element Method. The mathematical foundations of the finite element method with applications to partial differential equations (Proceedings of Symposium, University of Maryland, Baltimore, MD). Academic Press, New York (1972)

    Book  Google Scholar 

  47. Strang, G.: Piecewise polynomials and the finite element method. Bull. Am. Math. Soc. 79, 1128–1137 (1973)

    Article  MathSciNet  Google Scholar 

  48. Sudhakar, Y., Wall, W.A.: Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput. Methods Appl. Mech. Eng. 158, 39–54 (2013)

    Article  MathSciNet  Google Scholar 

  49. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  50. Yang, Z., Kollmannsberger, S., Düster, A., Ruess, M., Garcia, E., Burgkart, R., Rank, E.: Non-standard bone simulation: interactive numerical analysis by computational steering. Comput. Vis. Sci. 14, 207–216 (2012)

    Article  Google Scholar 

  51. Yang, Z., Ruess, M., Kollmannsberger, S., Düster, A., Rank, E.: An efficient integration technique for the voxel-based finite cell method. Int. J. Numer. Methods Eng. 91, 457–471 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Dauge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauge, M., Düster, A. & Rank, E. Theoretical and Numerical Investigation of the Finite Cell Method. J Sci Comput 65, 1039–1064 (2015). https://doi.org/10.1007/s10915-015-9997-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9997-3

Keywords

Navigation