Skip to main content
Log in

Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop parametrized positivity satisfying flux limiters for the high order finite difference Runge–Kutta weighted essentially non-oscillatory scheme solving compressible Euler equations to maintain positive density and pressure. Negative density and pressure, which often leads to simulation blow-ups or nonphysical solutions, emerges from many high resolution computations in some extreme cases. The methodology we propose in this paper is a nontrivial generalization of the parametrized maximum principle preserving flux limiters for high order finite difference schemes solving scalar hyperbolic conservation laws (Liang and Xu in J Sci Comput 58:41–60, 2014; Xiong et al. in J Comput Phys 252:310–331, 2013; Xu in Math Comput 83:2213–2238, 2014). To preserve the maximum principle, the high order flux is limited towards a first order monotone flux, where the limiting procedures are designed by decoupling linear maximum principle constraints. High order schemes with such flux limiters are shown to preserve the high order accuracy via local truncation error analysis and by extensive numerical experiments with mild CFL constraints. The parametrized flux limiting approach is generalized to the Euler system to preserve the positivity of density and pressure of numerical solutions via decoupling some nonlinear constraints. Compared with existing high order positivity preserving approaches (Zhang and Shu in Proc R Soc A Math Phys Eng Sci 467:2752–2776, 2011; J Comput Phys 230:1238–1248, 2011; J Comput Phys 231:2245–2258, 2012), our proposed algorithm is positivity preserving by the design; it is computationally efficient and maintains high order spatial and temporal accuracy in our extensive numerical tests. Numerical tests are performed to demonstrate the efficiency and effectiveness of the proposed new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  MATH  Google Scholar 

  3. Chakravarthy, S.R., Osher, S.: High Resolution Applications of the Osher Upwind Scheme for the Euler Equations. AIAA (1983)

  4. Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engquist, B., Osher, S.: Stable and entropy satisfying approximations for transonic flow calculations. Math. Comput. 34, 45–75 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Engquist, B., Sjögreen, B.: The convergence rate of finite difference schemes in the presence of shocks. SIAM J. Numer. Anal. 35, 2464–2485 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)

    Article  MathSciNet  Google Scholar 

  8. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13, 139–159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ha, Y., Gardner, C.L.: Positive scheme numerical simulation of high mach number astrophysical jets. J. Sci. Comput. 34, 247–259 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  12. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58, 41–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Linde, T., Roe, P.L.: Robust Euler codes. In: Thirteenth Computational Fluid Dynamics Conference, AIAA Paper-97-2098 (1997)

  17. Liu, X.-D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33, 760–779 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Perthame, B.: Second-order boltzmann schemes for compressible euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29, 1–19 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73, 119–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432 (1998)

  21. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  MATH  Google Scholar 

  24. Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Shu, C.-W., Yee, H., Sjögreen, B.: High-order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228, 6682–6702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)

    Article  MathSciNet  Google Scholar 

  27. Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014)

    Article  MathSciNet  Google Scholar 

  28. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order scheme solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83, 2213–2238 (2014)

    Article  MATH  Google Scholar 

  29. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Tao Xiong and Jing-Mei Qiu are supported by Air Force Office of Scientific Computing YIP Grant FA9550-12-0318, NSF DMS-1217008 and DMS-152277. Zhengfu Xu is supported by NSF Grant DMS-1316662. We would like to thank Xiangxiong Zhang from Purdue University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengfu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, T., Qiu, JM. & Xu, Z. Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations. J Sci Comput 67, 1066–1088 (2016). https://doi.org/10.1007/s10915-015-0118-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0118-0

Keywords

Navigation