Skip to main content
Log in

Data-Driven Multi-scale Non-local Wavelet Frame Construction and Image Recovery

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

By assuming that images of interest can be sparsely modelled by some transform, the sparsity-based regularization has been one promising approach for solving many ill-posed inverse problems in image recovery. One often-used type of systems for sparsifying images is wavelet tight frames, which can efficiently exploit the sparse nature of local intensity variations of images. However, existing wavelet frame systems lack the capability of exploiting another important image prior, i.e., the self-recursion of local image structures in both spatial and scale domain. Such a self-recursive prior of image structures has led to many powerful non-local image restoration schemes with impressive performance. This paper aims at developing a scheme for constructing a non-local wavelet frame or wavelet tight frame that is adaptive to the input image. The proposed multi-scale non-local wavelet frame allows the resulting regularization simultaneously exploits both the sparse prior of local variations of image intensity and the global self-recursive prior of image structures in spatial domain and across scales. Based on the proposed construction scheme, a powerful regularization method is developed for solving image deconvolution problem. The experiments showed that the results from the proposed regularization method are compared favorably against that from several popular image restoration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Lecture Notes, 1st edn. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  2. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, San Diego (2009)

    MATH  Google Scholar 

  3. Ron, A., Shen, Z.: Affine system in \(L_2(R^d)\): the analysis of the analysis operator. J. Funct. Anal. 148, 408–447 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Shen, Z.: Wavelet frames and image restorations. In: Proc. ICM, Hyderabad, India (2010)

  6. Donoho, D.: De-noising by soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candes, E., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise-\(C^2\) singularities. Commun. Pure Appl. Math. 57, 219–266 (2002)

    Article  MathSciNet  Google Scholar 

  8. Starck, J., Candes, E., Donoho, D.: The curvelet transform for image denoisi. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cai, J., Ji, H., Liu, C., Shen, Z.: High-quality curvelet-based motion deblurring using an image pair. In: CVPR (2009)

  10. Mallat, S., Lepennec, E.: Sparse geometric image representation with bandelets. IEEE Trans. Image Process. 14, 423–438 (2005)

    Article  MathSciNet  Google Scholar 

  11. Pennec, E., Mallat, S.: Bandlet image approximation and compression. SIAM Multiscale Model. Simul. 4(3), 992–1039 (2005)

    Article  MATH  Google Scholar 

  12. Cai, J.-F., Chan, R., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harmon. Anal. 24, 131–149 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cai, J., Ji, H., Liu, C., Shen, Z.: Framelet based blind image deblurring from a single image. IEEE Trans. Image Process. 21(2), 562–572 (2012)

    Article  MathSciNet  Google Scholar 

  14. Dong, B., Ji, H., Li, J., Shen, Z.: Wavelet frame based blind image inpainting. Appl. Comput. Harmon. Anal. 32(2), 268–279 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rudin, L., Osher, S., Fatemi, E.: Nonllienar total variation based noise removal algorithms. Phys. D. 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  16. Cai, J., Dong, B., Shen, Z., Osher, S.: Image restoration: total variation; wavelet frames; and beyond. J. Am. Math. Soc. 25(4), 1033–1089 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Elad, M., Ahron, M.: Image denoising via sparse and redundant representations over learned distionaries. IEEE Trans. Image Process. 54(12), 3736–3745 (2006)

    Article  Google Scholar 

  18. Cai, J., Ji, H., Shen, Z., Ye, G.: Data-driven tight frame construction and image denoising. Appl. Comput. Harmon. Anal. 37(1), 89–105 (2014)

  19. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR (2005)

  20. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peyre, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: ECCV (2008)

  22. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  25. Dabov, K., Foi, A., Katkovnik, K., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Proc. SPIE 6812, Image Processing: Algorithms and Systems VI, 681207 (2008). doi:10.1117/12.766355

  26. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2012)

    Article  MathSciNet  Google Scholar 

  27. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV (2011)

  28. Dong, B., Shen, Z.: MRA Based Wavelet Frames and Applications. IAS Lecture Notes Series. Park City Mathematics Institute, Park City (2010)

    Google Scholar 

  29. Cai, J.-F., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: CVPR (2009)

  30. Chan, R., Riemenschneider, S., Shen, L., Shen, Z.: Tight frame: anefficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17, 91–115 (2004)

  31. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Probl. 23(3), 947–968 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Cai, J.F., Osher, S., Shen, Z.: Split bregman methods and frame based image restoration. SIAM Multiscale Model. Simul. 8(2), 337–369 (2009)

    Article  MathSciNet  Google Scholar 

  34. Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shi, J., Ren, X., Dai, G., Wang, J., Zhang, Z.: A non-convex relaxation approach to sparse dictionary learning. In: CVPR, IEEE (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Y., Ji, H. & Shen, Z. Data-Driven Multi-scale Non-local Wavelet Frame Construction and Image Recovery. J Sci Comput 63, 307–329 (2015). https://doi.org/10.1007/s10915-014-9893-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9893-2

Keywords

Mathematics Subject Classification

Navigation