Skip to main content
Log in

Numerical Anisotropy Study of a Class of Compact Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study the numerical anisotropy existent in compact difference schemes as applied to hyperbolic partial differential equations, and propose an approach to reduce this error and to improve the stability restrictions based on a previous analysis applied to explicit schemes. A prefactorization of compact schemes is applied to avoid the inversion of a large matrix when calculating the derivatives at the next time level, and a predictor–corrector time marching scheme is used to update the solution in time. A reduction of the isotropy error is attained for large wave numbers and, most notably, the stability restrictions associated with MacCormack time marching schemes are considerably improved. Compared to conventional compact schemes of similar order of accuracy, the multidimensional schemes employ larger stencils which would presumably demand more processing time, but we show that the new stability restrictions render the multidimensional schemes to be in fact more efficient, while maintaining the same dispersion and dissipation characteristics of the one dimensional schemes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vichnevetsky, R., Bowles, J.B.: Fourier Analysis of Numerical Approximations of Hyperbolic Equations. SIAM Studies in Applied Mathematics, Philadelphia (1982)

    Book  MATH  Google Scholar 

  2. Trefethen, L.N.: Group velocity in finite difference schemes. SIAM Rev. 24, 113 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zingg, D.W., Lomax, H.: Finite difference schemes on regular triangular grids. J. Comput. Phys. 108, 306–313 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tam, C.K.W., Webb, J.C.: Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation. J. Comput. Phys. 113, 122–133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lin, R.K., Sheu, T.W.H.: Application of dispersion-relation-preserving theory to develop a two-dimensional convection-diffusion scheme. J. Comput. Phys. 208, 493–526 (2005)

    Article  MATH  Google Scholar 

  6. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational aeroacoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, G., Trueman, C.W.: Suppression of numerical anisotropy and dispersion with optimized finite-difference time-domain methods. IEEE Trans. Antennas Propag. 53, 4121–4128 (2005)

    Article  MathSciNet  Google Scholar 

  8. Shen, G., Cangellaris, A.C.: A new FDTD stencil for reduced numerical anisotropy in the computer modeling of wave phenomena. Int. J. RF Microw. Comput.-Aided Eng. 17, 447–454 (2007)

    Article  Google Scholar 

  9. Sescu, A., Afjeh, A.A., Hixon, R.: Optimized difference schemes for multidimensional hyperbolic PDEs. Electron. J. Differ. Equ. Conf. 17, 213–225 (2009)

    MathSciNet  Google Scholar 

  10. Sescu, A., Hixon, R., Afjeh, A.A.: Multidimensional optimization of finite difference schemes for computational aeroacoustics. J. Comput. Phys. 227, 4563–4588 (2008)

    Article  MATH  Google Scholar 

  11. Sescu, A., Afjeh, A.A., Hixon, R., Sescu, C.: Conditionally stable multidimensional schemes for advective equations. J. Sci. Comput. 42, 96–117 (2009)

    Article  MathSciNet  Google Scholar 

  12. Sescu, A., Hixon, R., Sescu, C., Abdollah, A.A.: Stability Investigation of Multidimensional Optimized Spatial Stencils, AIAA-Paper 2009-0005 (2009)

  13. Hixon, R.: Prefactored small-stencil compact schemes. J. Comput. Phys. 165, 522–541 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. MacCormack, R.W.: The Effect of Viscosity in Hypervelocity Impact Cratering. AIAA Paper AIAA-69-354 (1969)

  15. Hirsch, C.: Numerical Computation of Internal and External Flows. Volume 1: Fundamentals of Numerical Discretization. Wiley, ISBN-10: 0471923850 (2001)

  16. Gottlieb, D., Turkel, E.: Dissipative two-four methods for time-dependent problems. Math. Comput. 30, 703–723 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bayliss, A., Parikh, P., Maestrello, L., Turkel, E.: A Fourth-Order Scheme for the Unsteady Compressible Navier–Stokes Equations, NASA CR-177994, ICASE Rep., No. 85-44 (1984)

  18. Hixon, R., Turkel, E.: Compact implicit MacCormack-type schemes with high accuracy. J. Comput. Phys. 158, 51–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kennedy, C.A., Carpenter, M.H.: Comparison of Several Numerical Methods for Simulation of Compressible Shear Layers, Technical Report NASA-97-TP3484 (1997)

  20. Wendroff, B.: The stability of MacCormack’s method for the scalar advection equation. Appl. Math. Lett. 4, 89–91 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hong, H.: The exact region of stability for MacCormack scheme. Computing 56, 371–383 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express many thanks to the reviewers for their very constructive comments. AS thanks to Dr. A. Afjeh, from the University of Toledo, for many fruitful discussions and for the substantial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Sescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sescu, A., Hixon, R. Numerical Anisotropy Study of a Class of Compact Schemes. J Sci Comput 61, 327–342 (2014). https://doi.org/10.1007/s10915-014-9826-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9826-0

Keywords

Navigation