Skip to main content
Log in

Superconvergence of Jacobi–Gauss-Type Spectral Interpolation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we extend the study of superconvergence properties of Chebyshev-Gauss-type spectral interpolation in Zhang (SIAM J Numer Anal 50(5):2966–2985, 2012) to general Jacobi–Gauss-type interpolation. We follow the same principle as in Zhang (SIAM J Numer Anal 50(5):2966–2985, 2012) to identify superconvergence points from interpolating analytic functions, but rigorous error analysis turns out much more involved even for the Legendre case. We address the implication of this study to functions with limited regularity, that is, at superconvergence points of interpolating analytic functions, the leading term of the interpolation error vanishes, but there is no gain in order of convergence, which is in distinctive contrast with analytic functions. We provide a general framework for exponential convergence and superconvergence analysis. We also obtain interpolation error bounds for Jacobi–Gauss-type interpolation, and explicitly characterize the dependence of the underlying parameters and constants, whenever possible. Moreover, we provide illustrative numerical examples to show tightness of the bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne, Memoires publies par la class des sci. Acad. de Belgique 2(4), 1–103 (1912)

    Google Scholar 

  3. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  4. Gautschi, W.: Orthogonal Polynomials Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004); Oxford Science Publications

  5. Gottlieb, D., Shu, C.W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gottlieb, D., Shu, C.W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon. I. Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43(1–2), 81–98 (1992). Orthogonal polynomials and numerical methods

    Article  MATH  MathSciNet  Google Scholar 

  7. Hale, N., Tee, T.W.: Conformal maps to multiply slit domains and applications. SIAM J. Sci. Comput. 31(4), 3195–3215 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  9. Mastroianni, G., Milovanović, G.V.: Interpolation Processes: Basic Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2008)

    Book  Google Scholar 

  10. Pecaric, J., Ujevic, N.: A general interpolating formula and error bounds. Tamsui Oxf. J. Math. Sci. 26(1), 103–127 (2010)

    MATH  MathSciNet  Google Scholar 

  11. Platte, R.B., Trefethen, L.N., Kuijlaars, B.J.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53(2), 308–318 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ramanujan, S.: Ramanujan Collected Works. Chelsea, New York (1962)

    Google Scholar 

  13. Reddy, S.C., Weideman, J.A.C.: The accuracy of the Chebyshev differencing method for analytic functions. SIAM J. Numer. Anal. 42(5), 2176–2187 (2005). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, Volume 41 of Series in Computational Mathematics. Springer, Berlin (2011)

    Book  Google Scholar 

  15. Szegö, G.: Orthogonal Polynomials (4th edn). AMS Coll. Publ (1975)

  16. Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23(1), 1–10 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tee, T.W., Trefethen, L.N.: A rational spectral collocation method with adaptively transformed Chebyshev grid points. SIAM J. Sci. Comput. 28(5), 1798–1811 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, H.Y., Xiang, S.H.: On the convergence rates of Legendre approximation. Math. Comp. 81(278), 861–877 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, M.K., Chu, Y.M., Qiu, S.L., Jiang, Y.P.: Bounds for the perimeter of an ellipse. J. Approx. Theory 164(7), 928–937 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xiang, S.H.: On error bounds for orthogonal polynomial expansions and Gauss-type quadrature. SIAM J. Numer. Anal. 50(3), 1240–1263 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xie, Z.Q., Wang, L.L., Zhao, X.D.: On exponential convergence of Gegenbauer interpolation and spectral differentiation. Math. Comp. 82(282), 1017–1036 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, Z.: Superconvergence of spectral collocation and \(p\)-version methods in one dimensional problems. Math. Comp. 74(252), 1621–1636 (2005). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, Z.: Superconvergence of a Chebyshev spectral collocation method. J. Sci. Comput. 34(3), 237–246 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, Z.: Superconvergence points of polynomial spectral interpolation. SIAM J. Numer. Anal. 50(5), 2966–2985 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhao, X.D., Wang, L.L., Xie, Z.Q.: Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 51(3), 1443–1469 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

Li-Lian Wang and Xiaodan Zhao: The research of these two authors is partially supported by Singapore MOE AcRF Tier 1 Grant (RG 15/12), MOE AcRF Tier 2 Grant (2013–2016), and \( {A}^*\)STAR-SERC-PSF Grant (122-PSF-007).

Zhimin Zhang: This author is supported in part by the US National Science Foundation under Grant DMS-1115530.

Appendices

Appendix A: Jacobi Polynomials

The Jacobi polynomials satisfy the derivative relation (see [15, (4.21.7)]):

$$\begin{aligned} \partial _xP_N^{(\alpha ,\beta )}(x)=\frac{1}{2}(N+\alpha +\beta +1)P_{N-1}^{(\alpha +1,\beta +1)}(x), \end{aligned}$$
(6.1)

and there holds (see [15, (4.5.4)])):

$$\begin{aligned} P_{N}^{(\alpha ,\beta +1)}(x)=\frac{2}{2N+\alpha +\beta +2} \frac{(N+\beta +1)P_N^{(\alpha ,\beta )}(x)+(N+1)P_{N+1}^{(\alpha , \beta )}(x)}{1+x}.\qquad \end{aligned}$$
(6.2)

Another recurrence relation reads (see [15, (4.5.5)–(4.5.6)]):

$$\begin{aligned} (1-x^2)\partial _xP_{N}^{(\alpha ,\beta )}(x) =AP_{N-1}^{(\alpha ,\beta )}(x)+BP_{N}^{(\alpha ,\beta )}(x) +CP_{N+1}^{(\alpha ,\beta )}(x), \end{aligned}$$
(6.3)

where

$$\begin{aligned} A&= \frac{2(N+\alpha )(N+\beta )(N+\alpha +\beta +1)}{(2N+\alpha +\beta )(2N +\alpha +\beta +1)},\;\;\;\; B=\frac{2(\alpha -\beta )N(N+\alpha +\beta +1)}{(2N+\alpha +\beta )(2N +\alpha +\beta +2)},\\ C&= -\frac{2N(N+1)(N+\alpha +\beta +1)}{(2N+\alpha +\beta +1)(2N +\alpha +\beta +2)}. \end{aligned}$$

Appendix B: Proof of Theorem 4.2

We first present some necessary lemmas for its proof.

The following formula (see [3, Lemma 12.4.1]) is of paramount importance.

Lemma 7.1

Let \(z=(w+w^{-1})/2.\) Then

$$\begin{aligned} P_N(z)=\sum _{k=0}^N g_kg_{N-k}w^{N-2k}, \end{aligned}$$
(7.1)

where

$$\begin{aligned} g_k=\frac{(2k)!}{(k!)^22^{2k}}=\frac{\Gamma (k+1/2)}{\sqrt{\pi }\, k!},\quad k\ge 0. \end{aligned}$$
(7.2)

In fact, the coefficients \(\{g_k\}\) relate to the following Laurent series expansion.

Lemma 7.2

We have

$$\begin{aligned} F(w):=(1-w^{-2})^{-1/2}(1+w^{-1})= \sum _{k=0}^\infty \frac{g_k}{w^{2k}}+\sum _{k=0}^\infty \frac{g_k}{w^{2k+1}}, \end{aligned}$$
(7.3)

which converges uniformly for all complex-valued \(w\) such that \(|w|>1.\)

Proof

Recall the binomial expansion:

$$\begin{aligned} (1-w^{-2})^{-1/2}=\sum _{k=0}^\infty \frac{g_k}{w^{2k}},\quad \forall \, |w|>1. \end{aligned}$$
(7.4)

This implies (7.3).\(\square \)

The key idea of estimating \(m_Q\) is to show that for \(z\in \mathcal{E }_\rho \) with \(|w|=\rho >1,\)

$$\begin{aligned} \bigg |F(w)-\frac{Q_{N+1}(z)}{g_{N+1} w^{N+1}}\bigg |\rightarrow 0\;\; \mathrm{as} \;\; N\rightarrow \infty , \end{aligned}$$
(7.5)

and more importantly, we care about the rate it decays. For this purpose, let us split the error term into two parts:

$$\begin{aligned} \bigg |F(w)-\frac{Q_{N+1}(z)}{g_{N+1} w^{N+1}}\bigg |&= \bigg |\bigg (\sum _{k=0}^\infty \frac{g_k}{w^{2k}}- \sum _{k=0}^{N+1} \frac{g_kg_{N+1-k}}{g_{N+1} w^{2k}}\bigg ) \nonumber \\&\quad +\bigg (\sum _{k=0}^\infty \frac{g_k}{ w^{2k+1}}- \sum _{k=0}^{N} \frac{g_kg_{N-k}}{g_{N+1}w^{2k+1}}\bigg ) \bigg |\\&\le R_N^{e}(\rho ) + R_N^{o}(\rho ),\nonumber \end{aligned}$$
(7.6)

where

$$\begin{aligned} R_N^e(\rho )=\sum _{k=0}^{N+1}\frac{|q_k| |g_k|}{\rho ^{2k}}+ \sum _{k=N+2}^\infty \frac{|g_k|}{\rho ^{2k}}; \;\; R_N^o(\rho )=\sum _{k=0}^{N}\frac{|q_{k+1}| |g_k|}{\rho ^{2k+1}}+ \sum _{k=N+1}^\infty \frac{|g_k|}{\rho ^{2k+1}},\qquad \quad \end{aligned}$$
(7.7)

with

$$\begin{aligned} q_k:=q_k(N):=\frac{ g_{N+1-k}}{g_{N+1}}-1,\quad 0\le k\le N+1. \end{aligned}$$
(7.8)

We deduce from (7.2) and (7.8) the following useful properties of \(\{g_k\}\) and \(\{q_k\}.\)

Lemma 7.3

  1. (i)

    For \(k\ge 0, \, g_k>0,\) and \(\{g_k\}\) is strictly decreasing, namely,

    $$\begin{aligned} 1=g_0>g_1>\cdots >g_{k}>g_{k+1}>\cdots . \end{aligned}$$
    (7.9)
  2. (ii)

    We have

    $$\begin{aligned} 0=q_0<q_1<\cdots <q_{N}<q_{N+1}. \end{aligned}$$
    (7.10)

    Moreover, \((q_k+1)g_k<1,\) for \(1\le k\le N\), and \((q_{k+1}+1)g_k<1\) for \(1\le k\le N-1.\) In addition, \((q_{N+1}+1)g_{N+1}=1\), and \(q_{N+1}g_N<1\) for \(N\ge 2\).

Proof

  1. (i)

    It is clear that by (7.2), \(g_0=1\) and \(0<g_k<1\) for all \(k\ge 1.\) Since

    $$\begin{aligned} \frac{g_{k+1}}{g_k}= \frac{k+1/2}{k+1}<1, \end{aligned}$$
    (7.11)

    \(\{g_k\}\) is strictly decreasing with respect to \(k\).

  2. (ii)

    Observe from (7.8) and (i) that \(q_0=0\) and \(\{q_k\}\) is strictly increasing. A direct calculation leads to that for \(1\le k\le N-1,\)

    $$\begin{aligned} (q_{k+1}+1)g_k&= \frac{g_{N-k}}{g_{N+1}}g_{k}=\left( \prod _{j=0}^{k-2} \frac{1-\frac{1/2}{k-j}}{1-\frac{1/2}{N+1-j}}\right) \frac{(N-k+2)(N-k+1)}{2(N-k+3/2)(N-k+1/2)}\\&\le \frac{1}{2}\Big (1+\frac{1/2}{N-k+3/2}\Big ) \Big (1+\frac{1/2}{N-k+1/2}\Big )\le \frac{4}{5}<1, \end{aligned}$$

    where we used the fact \(1+\frac{1/2}{N-k+3/2}\) and \(1+\frac{1/2}{N-k+1/2}\) are strictly increasing with respect to \(k\). Note that if \(k=1\), the first term in the second identity equals \(1\).

By (7.9)–(7.10), we have

$$\begin{aligned} (q_{k+1}+1)g_{k+1}<(q_{k+1}+1)g_k;\quad (q_{k}+1)g_{k}<(q_{k+1}+1)g_k, \end{aligned}$$

which implies \((q_{k}+1)g_k<1\) for \(1\le k\le N\).

Next, by (7.2) and (7.8), we have \((q_{N+1}+1)g_{N+1}=1\) and

$$\begin{aligned} q_{N+1}g_{N}=\frac{g_{N}}{g_{N+1}}-g_N=1+\frac{1}{2N+1}-g_N<1, \end{aligned}$$

since \(g_N=\frac{\Gamma (N+1/2)}{\sqrt{\pi }N\Gamma (N)} >\frac{1}{\sqrt{\pi }N}>\frac{1}{2N+1}\) for \(N\ge 2\). This ends the proof.\(\square \)

Lemma 7.4

We have

$$\begin{aligned} 0<q_k\le D_{k,N}, \quad 1\le k\le N-1, \end{aligned}$$
(7.12)

where \(D_{k,N}\) is defined in (4.17).

Proof

By (7.2) and (7.8), we obtain from (4.2)–(4.3) that

$$\begin{aligned} q_k+1&= \frac{g_{N+1-k}}{g_{N+1}}=\frac{\Gamma (N-k+3/2)}{\Gamma (N-k+2)} \frac{\Gamma (N+2)}{\Gamma (N+3/2)} \\&\le \sqrt{\frac{N+1}{N-k+1}}\, \mathrm{exp}\big (\Upsilon _{N-k+1}^{1/2,1} +\Upsilon _{N+1}^{1,1/2}\big ). \end{aligned}$$

A direct calculation leads to

$$\begin{aligned} \Upsilon _{N-k+1}^{1/2,1}+\Upsilon _{N+1}^{1,1/2}&= \frac{1}{6(2N-2k+1)}+\bigg (\frac{1}{2(2N+1)} +\frac{1}{12(N+1)}\bigg )\\&\le \frac{1}{12(N-k)} + \frac{1}{3N}\le \frac{5}{12 (N-k)},\quad 1\le k\le N-1. \end{aligned}$$

Using the fact \(\sqrt{1+x}\le 1+\frac{x}{2}\) (with \(x\ge 0\)) yields

$$\begin{aligned} \sqrt{\frac{N+1}{N-k+1}}\le 1+\frac{k}{2(N-k+1)}\le 1+\frac{k}{2(N-k)}. \end{aligned}$$

Consequently, we obtain

$$\begin{aligned} q_k+1\le \Big (1+\frac{k}{2(N-k)}\Big )\mathrm{exp}\Big (\frac{5}{12 (N-k)}\Big ), \end{aligned}$$
(7.13)

which gives the desired upper bound.\(\square \)

Proof of Theorem 4.2

By (7.6),

$$\begin{aligned} \big |Q_{N+1}(z)\big |\ge g_{N+1} \rho ^{N+1}\big \{|F(w)|-\big (R_N^e(\rho )+R_N^o(\rho )\big )\big \}. \end{aligned}$$
(7.14)

As \(|w|=\rho ,\) we find

$$\begin{aligned} |F(w)|=|1-w^{-2}|^{-1/2}|1+w^{-1}|\ge \frac{1-\rho ^{-1}}{\sqrt{1+\rho ^{-2}}}=\frac{\rho -1}{\sqrt{1+\rho ^2}}. \end{aligned}$$
(7.15)

By (7.2) and (4.2),

$$\begin{aligned} g_{N+1}\ge \frac{1}{\sqrt{\pi N}} \mathrm{exp}\big (-\Upsilon _N^{2,3/2}\big )\ge \frac{1}{\sqrt{\pi N}} e^{-\frac{5}{6N}}. \end{aligned}$$
(7.16)

We now work on the upper bound of \(R_N^e(\rho )+R_N^o(\rho )\) defined in (7.7). Using the properties in Lemma 7.3 and (7.3)–(7.4), we obtain that for some \(1<K<N,\)

$$\begin{aligned} R_N^e(\rho )&= \sum _{k=1}^{K}\frac{q_k g_k}{\rho ^{2k}}+\sum _{k=K+1}^{N+1}\frac{q_k g_k}{\rho ^{2k}}+ \sum _{k=N+2}^\infty \frac{g_k}{\rho ^{2k}}\\&\le q_K \sum _{k=1}^{K}\frac{g_k}{\rho ^{2k}}+ \sum _{k=K+1}^{N+1}\frac{1}{\rho ^{2k}}+ \sum _{k=N+2}^\infty \frac{1}{\rho ^{2k}}\\&\le q_K \Big ((1-\rho ^{-2})^{-1/2}-1\Big )+ \frac{1}{\rho ^{2K}(\rho ^2-1)}, \end{aligned}$$

and similarly,

$$\begin{aligned} R_N^o(\rho )&= \sum _{k=0}^{K-1}\frac{q_{k+1} g_k}{\rho ^{2k+1}}+\sum _{k=K}^{N}\frac{q_{k+1} g_k}{\rho ^{2k+1}}+ \sum _{k=N+1}^\infty \frac{g_k}{\rho ^{2k+1}}\\&\le q_K \sum _{k=0}^{K-1}\frac{g_k}{\rho ^{2k+1}}+ \sum _{k=K}^{N}\frac{1}{\rho ^{2k+1}}+ \sum _{k=N+1}^\infty \frac{1}{\rho ^{2k+1}}\\&\le q_K \rho ^{-1}(1-\rho ^{-2})^{-1/2}+ \frac{1}{\rho ^{2K-1}(\rho ^2-1)}. \end{aligned}$$

Collecting the terms leads to the upper bound

$$\begin{aligned} R_N^e(\rho )+R_N^o(\rho ) \le \bigg (\sqrt{\frac{\rho +1}{\rho -1}}-1 \bigg ) q_K + \frac{1}{\rho ^{2K}(\rho -1)}. \end{aligned}$$
(7.17)

Thus, a combination of (7.14)–(7.17) yields (4.15).

It remains to show the asymptotic estimate (4.18). Observe that for \(N\gg 1,\) if we choose \(K=[N^\varepsilon ]\) with \(0<\varepsilon <1,\) then

$$\begin{aligned} D_{K,N}=\frac{N^{\varepsilon -1}}{2}+O(N^{-1}). \end{aligned}$$
(7.18)

Therefore,

$$\begin{aligned} A(K,N;\rho )=\frac{\rho -1}{\sqrt{1+\rho ^2}}-\bigg (\sqrt{\frac{\rho +1}{\rho -1}}-1 \bigg )\Big (\frac{N^{\varepsilon -1}}{2}+O(N^{-1})\Big ) -O\big (\rho ^{-(2N^{\varepsilon }+1)}\big ).\nonumber \\ \end{aligned}$$
(7.19)

Thus, for \(N\gg 1,\)

$$\begin{aligned} A(K,N;\rho )\approx \frac{\rho -1}{\sqrt{1+\rho ^2}}. \end{aligned}$$

Hence, the conclusion follows from (4.15). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LL., Zhao, X. & Zhang, Z. Superconvergence of Jacobi–Gauss-Type Spectral Interpolation. J Sci Comput 59, 667–687 (2014). https://doi.org/10.1007/s10915-013-9777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9777-x

Keywords

Mathematics Subject Classification (2000)

Navigation