Skip to main content

Advertisement

Log in

A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a linear iteration algorithm to implement a second-order energy stable numerical scheme for a model of epitaxial thin film growth without slope selection. The PDE, which is a nonlinear, fourth-order parabolic equation, is the \(L^2\) gradient flow of the energy \( \int _\Omega \left( - \frac{1}{2} \ln \left( 1 + | \nabla \phi |^2 \right) + \frac{\epsilon ^2}{2}|\Delta \phi (\mathbf{x})|^2 \right) \mathrm{d}\mathbf{x}\). The energy stability is preserved by a careful choice of the second-order temporal approximation for the nonlinear term, as reported in recent work (Shen et al. in SIAM J Numer Anal 50:105–125, 2012). The resulting scheme is highly nonlinear, and its implementation is non-trivial. In this paper, we propose a linear iteration algorithm to solve the resulting nonlinear system. To accomplish this we introduce an \(O(s^2)\) (with \(s\) the time step size) artificial diffusion term, a Douglas-Dupont-type regularization, that leads to a contraction mapping property. As a result, the highly nonlinear system can be decomposed as an iteration of purely linear solvers, which can be very efficiently implemented with the help of FFT in a collocation Fourier spectral setting. We present a careful analysis showing convergence for the numerical scheme in a discrete \(L^\infty (0, T; H^1) \cap L^2 (0,T; H^3)\) norm. Some numerical simulation results are presented to demonstrate the efficiency of the linear iteration solver and the convergence of the scheme as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, W., Wang, Y.: A mixed finite element method for thin film epitaxy. Numer. Math. 122, 771–793 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ehrlich, G., Hudda, F.G.: Atomic view of surface diffusion: tungsten on tungsten. J. Chem. Phys. 44, 1036–1099 (1966)

    Google Scholar 

  4. Evans, J.W., Thiel, P.A., Bartelt, M.C.: Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 61, 1–128 (2006)

    Article  Google Scholar 

  5. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds). Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale, PA (1998)

  6. Golubović, L.: Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78, 90–93 (1997)

    Article  Google Scholar 

  7. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., Orr, B.G.: Stable and unstable growth in molecular beam epitaxy. Phys. Rev. Lett. 72, 116–119 (1994)

    Article  Google Scholar 

  9. Kohn, R.V.: Energy-driven pattern formation. In: Sanz-Sole, M., Soria, J., Varona, J.L., Verdera, J. (eds). Proceedings of the International Congress of Mathematicians, vol. 1, pp. 359–384. European Mathematical Society Publishing House, Madrid (2007)

  10. Kohn, R.V., Yan, X.: Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math. 56, 1549–1564 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, B.: High-order surface relaxation versus the Ehrlich–Schwoebel effect. Nonlinearity 19, 2581–2603 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, B., Liu, J.-G.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14, 713–743 (2003)

    Article  MATH  Google Scholar 

  13. Li, B., Liu, J.-G.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moldovan, D., Golubovic, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61, 6190–6214 (2000)

    Article  Google Scholar 

  15. Qiao, Z., Sun Z., Zhang, Z.: Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. (accepted)

  16. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qiao, Z., Sun, Z., Zhang, Z.: The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model. Numer. Methods Partial Diff. Eq. 28, 1893–1915 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schwoebel, R.L.: Step motion on crystal surfaces: II. J. Appl. Phys. 40, 614–618 (1969)

    Article  Google Scholar 

  19. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  21. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discret. Cont. Dyn. Syst. A 28, 405–423 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Science Foundation, specifically, DMS-1008852, DMS-1002618, DMS-1312701 (X. Wang), DMS-1115390 (S.M. Wise), and DMS-1115420 (C. Wang), the Ministry of Education of China and the State Administration of Foreign Experts Affairs of China under 111 project grant B08018 (W. Chen), and the Key Project National Science Foundation of China 91130004 (W. Chen). C. Wang also thanks the Key Laboratory of Mathematics for Nonlinear Sciences (EZH1411104), Fudan University, for support during his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Wang, C., Wang, X. et al. A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection. J Sci Comput 59, 574–601 (2014). https://doi.org/10.1007/s10915-013-9774-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9774-0

Keywords

Navigation