Skip to main content
Log in

An Iterative Scheme for Total Variation-Based Image Denoising

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The total variation is a useful method for solving noise problems (denoising) because the total variation is very effective for recovering blocky, possibly discontinuous, images from noise data. However, it is not a easy problem to find the true image without noise from the total variation. In this paper a new functional is introduced to find the true image without noise by using the minimizer of the total variation. We prove the convergence of the sequence induced from the modified functional in the iterative scheme, and show that our numerical denoising gives significant improvement over other previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problem. Inverse Probl. 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition modeling, algorithms and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Caculus of Variations. Springer, Berlin (2006)

    Google Scholar 

  4. Aujol, J., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation componet and an oscillating component. J. Math. Imaging Vis. 22, 71–88 (2005)

    Article  Google Scholar 

  5. Bachmayr, M., Burger, M.: Iterative total variation schemes for nonlinear inverse problems. Inverse Probl. 25(10), 7–35 (2009)

    Google Scholar 

  6. Carter, J.L.: Dual methods for total variation-based image restoration. Ph.D. thesis, UCLA (2001)

  7. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(a), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, T.F., Chen, K., Carter, J.L.: Iterative methods for solving the dual formulation arising from image restoration. Electron. Trans. Numer. Anal. 26, 299–311 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Chan, T.F., Esedoglu, S., Park, F.E.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. In: Proceedings of 2010 IEEE 17th International Conference on Image Processing, Hong Kong, 26–29 September (2010)

  12. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variatoin-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chan, T.F., Marquina, A., Mulet, P.: High order total variation based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Conway, J.: A Course in Operator Theory. GSM, vol 21. AMS, Providence

  15. Dobson, D.C., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34(5), 1779–1791 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dobson, D.C., Santosa, F.: An image enhancement technique for electrical impedance tomography. Inverse Probl. 10, 317–334 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Evans, L.C.: Partial Differenctial Equations. Graduate Studies in Mathematics vol 19. American Mathematical Society Providence, Rhode Island (1998)

  18. Farago, I., Karatson, J.: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications. Advances in Computation: Theory and Practice, vol 11 (2002)

  19. Giusi, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Berlin (1984)

    Book  Google Scholar 

  20. Hutson, V., Pym, J.S.: Applications of Functional Analysis and Operator Theory. Academic Press, Waltham (1980)

    MATH  Google Scholar 

  21. Kac̆ur, J., Mikula, K.: Slow and fast diffusion effects in image processing. Comput. Vis. Sci. 3, 185–195 (2001)

    Article  Google Scholar 

  22. Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Process. 5, 987–995 (1996)

    Article  Google Scholar 

  23. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. SIAM, JMMS 4, 460–489 (2005)

    MATH  MathSciNet  Google Scholar 

  24. Pedersen, G.: Analysis now, GTM. vol 118, Springer, Berlin

  25. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  26. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–235 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vogel, C.R., Oman, M.E.: Fast numerical methods for total variation minimization in image reconstruction. In: SPIE Proceedings, vol 2563, ASPA, July (1995)

  28. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7(6), 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vogel, C.R.: A multigrid method for total variation-based image denoising. In: Bowers, K. Lund, J. (eds.) Computation and Control IV, vol. 20 of Progess in Systems and Control Theory, Birkhauser, Berlin (1995)

  30. Yi, D.: An Algorithm for image removals and decompositions without inverse matrices. J. Comput. Appl. Math. 225, 428–439 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yi, D., Choi, B.: Nonlinear partial differential equations for noise problems. Adv. Imaging Electron Phys. 164, 329–343 (2010)

    Article  Google Scholar 

  32. Yi, D., Kim, E.-Y., Choi, B.: An effective method for solving nonlinear equations and its application. Appl. Math. Comput. 220, 568–579 (2013)

    Google Scholar 

  33. Yi, D., Lee, S.: Fourth-order partial differential equations for image enhancement. Appl. Math. Comput. 175, 430–440 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yin, W., Osher, S., Goldfarb, S., Darbon, J.: Bregman iterative algorithms for \(l_1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dokkyun Yi.

Additional information

This work was supported by NIMS (National Institute for Mathematical Sciences).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, D. An Iterative Scheme for Total Variation-Based Image Denoising. J Sci Comput 58, 648–671 (2014). https://doi.org/10.1007/s10915-013-9750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9750-8

Keywords

Navigation