Skip to main content
Log in

A Stability Criterion for Semi-Discrete Difference Schemes of Hyperbolic Conservation Laws on Uniform Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the present study, the stability condition for semi-discrete difference schemes of hyperbolic conservation laws obtained from Fourier analysis is simplified. This stability condition can be applied only to linear difference schemes with constant coefficients implemented with periodic boundary treatment. It could often give useful results for other cases, such as schemes with variable coefficients, schemes for nonperiodic problem and nonlinear problem. However, this condition usually leads to a trigonometric inequality, which makes it not convenient to use. For explicit difference schemes on uniform grids, this trigonometric inequality can be converted to polynomial form. Furthermore, if the scheme is a high-order one, the polynomial can be factorized into a simple form. Thus, it is much easier to solve than the inequality obtained directly from Fourier analysis. For compact difference schemes and conservative schemes, similar results are obtained. Some applications of this new stability criterion are shown, including judging the stability of two schemes, proving the upstream central schemes to be stable, constructing a stable upwind dissipation relation preserving (DRP) scheme and constructing an optimized weighted essentially non-oscillatory (WENO) scheme. Since WENO schemes are nonlinear schemes, the stability analysis in the present study is performed on their underlying linear schemes. According to the numerical tests, the underlying linear scheme should be stable, otherwise the corresponding WENO scheme may display instability. These applications demonstrate that this criterion is convenient and efficient for judging the linear stability of semi-discrete difference schemes and constructing stable upwind difference schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leveque, R.J.: Numerical Methods for Conservation Laws. Birkhuser, Basel (1990)

  2. Kreiss, H.O., Wu, L.: On the stability definition of difference approximations for the initial boundary value problem. Appl. Numer. Math. 12, 213–227 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gustafsson, B., Kreiss, H.O., Sundstrm, A.: Stability theory of difference approximations for mixed initial boundary value problems. II. Math. Comp. 26, 649–686 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192(2), 677–694 (2003)

    Article  MATH  Google Scholar 

  5. Larsson, J., Gustafsson, B.: Stability criteria for hybrid difference methods. J. Comput. Phys. 227, 2886–2898 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferretti, R.: Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large courant numbers. SIAM J. Numer. Anal. 40(6), 2240–2253 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Qiu, J.M., Shu, C.W.: Convergence of Godunov-type schemes for scalar conservation laws under large time steps. SIAM J. Numer. Anal. 46(5), 2211–2237 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yamaleev, N.K., Carpenter, M.H.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228(11), 4248–4272 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vichnevetsky, R., Bowles, J.B.: Fourier analysis of numerical approximation of hyperbolic equations. SIAM, Philadelphia (1982)

    Book  Google Scholar 

  11. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lin, S.Y., Hu, J.J.: Parameter study of weighted essentially non-oscillatory schemes for computational aeroacoustics. AIAA J. 39, 371–379 (2001)

    Article  Google Scholar 

  13. Lockard, D.P., Brentner, K.S., Atkins, H.L.: High accuracy algorithms for computational aeroacoustics. AIAA J. 33(2), 246–251 (1995)

    Article  MATH  Google Scholar 

  14. Andrews, G.E., Askey, R., Roy, R.: Special Functions, 2nd edn. Cambridge Univ. Press, Cambridge (2001)

    Google Scholar 

  15. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2001)

    Article  MathSciNet  Google Scholar 

  17. Zhuang, M., Chen, R.F.: Applications of high-order optimized upwind schemes for computational aeroacoustics. AIAA J. 40(3), 443–449 (2002)

    Article  MathSciNet  Google Scholar 

  18. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, Z.J., Chen, R.F.: Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity. J. Comput. Phys. 174, 381–404 (2001)

    Article  MATH  Google Scholar 

  20. Martn, M.P., Taylor, E.M., Wu, M., et al.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  Google Scholar 

  21. Stephen, H.F., Arnold, J.I., Lawrence, E.S.: Linear Algebra, 3rd edn. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  22. Klinger, A.: The vandermonde matrix. Am. Math. Mon. 74(5), 571–574 (1967)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under the Grant number of 11102179 and 91130030. The authors are grateful to the anonymous referees for very fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conghai Wu.

Appendix

Appendix

1.1 Appendix 1: Proof of Lemma 1

From the expression of \(g_{n}^{l},\) we have

  1. (a).

    \(g_{n}(p)=g_{-n}(p)\) ;

  2. (b).

    \(g_{n}^{l}=0\) for \(l>|n|\).

Therefore we need consider only the case \(n\ge 0\). As this is assumed, the expression \(g_{n}(p)=\sum _{l=0}^{L}g_{n}^{l}p^{l} (L\) is an integer larger than \(|n|\)) can be written as \(g_{n}(p)=\sum _{l=0}^{n}g_{n}^{l}p^{l}\).

Mathematical induction will be used to prove it.

  1. 1.

    For \(n=0, g_{0}(p)=g_{0}^{0}p^{0}=1=\cos (0\cdot \kappa )\);

  2. 2.

    For \(n=1, g_{1}(p)=g_{1}^{1}p^{1}+g_{1}^{0}p^{0}=-p+1=\cos (1\cdot \kappa )\);

  3. 3.

    Assume that \(g_{n}(p)=\cos (n\kappa )\) for \(n\le m\) (\(m\ge 1,\ m\in \varvec{N}\)). As for \(n=m+1\),

    $$\begin{aligned} g_{m+1}(p)&= \cos [(m+1)\kappa ]=2\cos (\kappa ) \cos (m\kappa )-\cos [(m-1)\kappa ]\\&= 2(-p+1)g_{m}(p)-g_{m-1}(p). \end{aligned}$$

    That’s

    $$\begin{aligned} \sum _{l=0}^{m+1}g_{m+1}^{l}p^{l}=2(-p+1) \sum _{l=0}^{m}g_{m}^{l}p^{l}-\sum _{l=0}^{m-1}g_{m-1}^{l}p^{l}, \end{aligned}$$

    and this formula is the one which should be proved.

In fact, it is equivalent to that the coefficients of each power of \(p\) in both sides of the equation are equal. Thus, it can be discussed as following:

  1. (a).

    The coefficients of \(p^{0}\): the equation is \(g_{m+1}^{0}=2g_{m}^{0}-g_{m-1}^{0}\). That is \(1=2\cdot 1-1\), it is true.

  2. (b).

    The coefficients of \(p^{1}\): the equation is \(g_{m+1}^{1}=2g_{m}^{1}-g_{m-1}^{1}-2g_{m}^{0}\). That is \(-(m+1)^{2}=2m^{2}-(m-1)^{2}-2\cdot 1\), it is also true.

  3. (c).

    The coefficients of \(p^{l}\), where \(2\le l\le m-1\): the equation is \(g_{m+1}^{l}=2g_{m}^{l}-g_{m-1}^{l}-2g_{m}^{l-1}\).

Furthermore, the formula of \(g_{n}^{l}\) can be written in another form

$$\begin{aligned} g_{n}^{l}=(-1)^{l}2^{l-1}\frac{\prod _{i=0}^{l-1}(n^{2}-i^{2})}{\prod _{i=0}^{l-1}(l^{2}-i^{2})}&= (-1)^{l}2^{l-1} \frac{\prod _{i=0}^{l-1}(n+i)(n-i)}{\prod _{i=0}^{l-1}(l+i)(l-i)}\\&= (-1)^{l}2^{l-1}\frac{(n-l+1)(n-l+2)\cdots (n+l-1)\cdot n}{1\cdot 2\cdot \cdots \cdot (2l-1)\cdot l}\\&= (-1)^{l}2^{l-1}\frac{\frac{(n+l-1)!}{(n-l)!}n}{\frac{(2l)!}{2}}=n(-2)^{l}\frac{(n+l-1)!}{(n-l)!(2l)!}. \end{aligned}$$

This form also holds true for \(l=1\), because \(g_{n}^{1}=-n^{2}=n(-2)^{1}\frac{(n+1-1)!}{(n-1)!(2\cdot 1)!}\). So the following equation needs to be proved.

$$\begin{aligned}&(m+1)(-2)^{l}\frac{(m+l)!}{(m-l+1)!(2l)!}\\&\quad = 2m(-2)^{l}\frac{(m+l-1)!}{(m-l)!(2l)!}\\&\qquad -(m-1)(-2)^{l} \frac{(m+l-2)!}{(m-l-1)!(2l)!}-2m(-2)^{l}\frac{(m+l-2)!}{(m-l+1)!(2l-2)!}. \end{aligned}$$

As the factor \((-2)^{l}\frac{(m+l-2)!}{(m-l+1)!(2l)!}\) is extracted, the equation becomes:

$$\begin{aligned} (m+1)(m+l-1)(m+l)&= 2m(m+l-1)(m-l+1)-(m-1)(m-l)(m-l+1)\\&+m(2l-1)\cdot 2l. \end{aligned}$$

After computation, the two sides of the equation are equal to the same value \((m+1)l^{2}+(m+1)(2m-1)l+m(m+1)(m-1)\). Therefore \(g_{m+1}^{l}=2g_{m}^{l}-g_{m-1}^{l}-2g_{m}^{l-1}\) is also true.

  1. (d).

    The coefficients of \(p^{m}\): the equation is \(g_{m+1}^{m}=2g_{m}^{m}-2g_{m}^{m-1}\). From the expression of \(g_{n}^{l}\), the equation becomes \((m+1)(-2)^{m}=2\cdot (-1)^{m}2^{m-1}-2m(-2)^{m-1}\). Obviously it is true.

  2. (e).

    The coefficients of \(p^{m+1}\): the equation is \(g_{m+1}^{m+1}=-2g_{m}^{m}\). That’s \((-1)^{m+1}2^{m}=-2\cdot (-1)^{m}2^{m-1}\), which is also true.

Therefore, \(g_{n}(p)=\cos (n\kappa )\) holds for \(n=m+1\). According to the mathematical induction, \(g_{n}(p)=\sum _{l=0}^{n}g_{n}^{l}p^{l}\) is true for all nonnegative integer \(n\). Thus, the proof is completed.

1.2 Appendix 2: Proofs of Lemma 2 and Lemma 3

For brevity, the sums on \(m\),\(n\) in these proofs refer to the sums for \(m=m_{1},\ldots ,m_{2}\) and \(n=n_{1},\ldots ,n_{2}\) respectively, if not specified.

  • the case of explicit difference schemes:

Suppose the scheme is \(q\)-th order accurate. Then the following equations hold:

$$\begin{aligned} 0&= \sum _{n}a_{n},\nonumber \\ 1&= \sum _{n}na_{n},\nonumber \\ 0&= \sum _{n}n^{2}a_{n},\\&\cdots \nonumber \\ 0&= \sum _{n}n^{q}a_{n}.\nonumber \end{aligned}$$
(6.1)

Note that \(g_{n}^{l}\) is a polynomial of \(n^{2}\) of degree \(l\). It can be written as \(g_{n}^{l}=\sum _{j=0}^{l}c_{l}^{j}(n^{2})^{j}\), where \(c_{l}^{j}\) are the coefficients. Then

$$\begin{aligned} b_{l}=\sum _{n}a_{n}g_{n}^{l}=\sum _{n}a_{n} \sum _{j=0}^{l}c_{l}^{j}(n^{2})^{j}=\sum _{j=0}^{l}c_{l}^{j}\sum _{n}a_{n}(n^{2})^{j}. \end{aligned}$$

From Eq.(6.1), \(\sum _{n}a_{n}(n^{2})^{j}=0\) for \(j=0,1,\ldots ,[q/2]\). Therefore, \(b_{l}=0\) for \(l=0,1,\ldots ,[q/2]\).

  • the case of compact schemes:

According to the proof for explicit difference scheme, the following equations are sufficient condition of the lemma.

$$\begin{aligned} \sum _{r=r_{1}}^{r_{2}}r^{2s}\beta _{r}=0.\quad s=0,1,\ldots ,[q/2] \end{aligned}$$

By substituing \(\beta _{r}\) with Eq. (2.22), it becomes

$$\begin{aligned} \sum _{m}\sum _{n}(n-m)^{2s}\alpha _{m}a_{n}=0.\quad s=0,1,\ldots ,[q/2] \end{aligned}$$
(6.2)

For compact scheme (2.19), accuracy of \(q\)-th order requires

$$\begin{aligned} s\sum _{m}m^{s-1}\alpha _{m}=\sum _{n}n^{s}a_{n}.\quad s=0,1,\ldots ,q \end{aligned}$$

Thus, for a positive integer \(p\),

$$\begin{aligned} \sum _{n}(n-m)^{p}a_{n}&= \sum _{n}\sum _{d=0}^{p}C_{p}^{d}\cdot n^{d}\cdot (-m)^{p-d}\cdot a_{n}\\&= \sum _{d=0}^{p}C_{p}^{d}\cdot (-m)^{p-d}\cdot \sum _{n}n^{d}a_{n}\\&= \sum _{d=1}^{p}C_{p}^{d}\cdot (-m)^{p-d}\cdot d\sum _{l=m_{1}}^{m_{2}}l^{d-1}\alpha _{l}+C_{p}^{0}\cdot (-m)^{p-0}\cdot 0\\&= \sum _{d=1}^{p}pC_{p-1}^{d-1}\cdot (-m)^{p-d}\sum _{l=m_{1}}^{m_{2}}l^{d-1}\alpha _{l}, \end{aligned}$$

where \(C_{p}^{d}=\frac{p!}{d!(p-d)!}\) is the binomial coefficient. Then

$$\begin{aligned} \sum _{m}\sum _{n}(n-m)^{p}\alpha _{m}a_{n}&= \sum _{m}\alpha _{m}\left( \sum _{n}(n-m)^{p}a_{n}\right) \\&= \sum _{m}\alpha _{m}\cdot \sum _{d=1}^{p}pC_{p-1}^{d-1} \cdot (-m)^{p-d}\sum _{l=m_{1}}^{m_{2}}l^{d-1}a_{n}\\&= (p_{1}+1)\sum _{d_{1}=0}^{p_{1}} C_{p_{1}}^{d_{1}}(-1)^{p_{1}-d_{1}}\left( \sum _{m=m_{1}}^{m_{2}} m^{p_{1}-d_{1}}\alpha _{m}\right) \left( \sum _{l=m_{1}}^{m_{2}}l^{d_{1}}\alpha _{l}\right) , \end{aligned}$$

where \(p_{1}=p-1,d_{1}=d-1\). For \(p=2s\), split the summation,

$$\begin{aligned} \sum _{m}\sum _{n}(n-m)^{p}\alpha _{m}a_{n}&= 2s\sum _{d_{1}=0}^{s-1}C_{2s-1}^{d_{1}}(-1)^{2s-1-d_{1}} \left( \sum _{m=m_{1}}^{m_{2}}m^{2s-1-d_{1}}\alpha _{m}\right) \left( \sum _{l=m_{1}}^{m_{2}}l^{d_{1}}\alpha _{l}\right) \\&+2s\sum _{d_{1}=s}^{2s-1}C_{2s-1}^{d_{1}}(-1)^{2s-1-d_{1}} \left( \sum _{m=m_{1}}^{m_{2}}m^{2s-1-d_{1}}\alpha _{m}\right) \left( \sum _{l=m_{1}}^{m_{2}}l^{d_{1}}\alpha _{l}\right) \\&= 2s\sum _{d_{1}=0}^{s-1}C_{2s-1}^{d_{1}}(-1)^{2s-1-d_{1}} \left( \sum _{m=m_{1}}^{m_{2}}m^{2s-1-d_{1}}\alpha _{m}\right) \left( \sum _{l=m_{1}}^{m_{2}}l^{d_{1}}\alpha _{l}\right) \\&+2s\sum _{d_{1}=0}^{s-1}C_{2s-1}^{2s-1-d_{1}}(-1)^{d_{1}} \left( \sum _{m=m_{1}}^{m_{2}}m^{d_{1}}\alpha _{m}\right) \left( \sum _{l=m_{1}}^{m_{2}}l^{2s-1-d_{1}}\alpha _{l}\right) \\&= 0. \end{aligned}$$

Therefore (6.2) is proved. Then \(b_{l}=0\) for \(l=0,1,\ldots ,[q/2]\).

1.3 Appendix 3: Proof of Lemma 4

Because \(g_{n}^{l}=0\) for \(|l|>|n|\) and \(-n_{1}>n_{2}\ge 0\) ,

$$\begin{aligned} b_{-n_{1}}=\sum _{n=n_{1}}^{n_{2}} a_{n}g_{n}^{-n_{1}}=a_{n_{1}}g_{n_{1}}^{-n_{1}}=a_{n_{1}}g_{-n_{1}}^{-n_{1}}. \end{aligned}$$

Hence, judging the sign of \(a_{n_{1}}\) and \(g_{-n_{1}}^{-n_{1}}\) is on the way. According to the formula of \(g_{n}^{l}, g_{-n_{1}}^{-n_{1}}=(-1)^{-n_{1}}2^{-n_{1}-1}.\) Therefore \(\text{ sgn }\left( g_{-n_{1}}^{-n_{1}}\right) =(-1)^{-n_{1}}\).

As for \(a_{n_{1}}\), it could be obtained by solving Eq. (6.1) with Crammer law [21], that is

$$\begin{aligned} a_{n_{1}}=\frac{|B|}{|A|}, \end{aligned}$$

where

$$\begin{aligned} |A|=\left| \begin{array}{lllll} 1 &{} 1 &{} \ldots &{} &{} 1\\ n_{1} &{} n_{1}+1 &{} &{} &{} n_{2}\\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ \\ n_{1}^{q} &{} (n_{1}+1)^{q} &{} \cdots &{} &{} n_{2}^{q} \end{array}\right| _{q+1},\quad |B|=\left| \begin{array}{lllll} 0 &{} 1 &{} \ldots &{} &{} 1\\ 1 &{} n_{1}+1 &{} \cdots &{} &{} n_{2}\\ 0 &{} (n_{1}+1)^{2} &{} &{} &{} n_{2}^{2}\\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ 0 &{} (n_{1}+1)^{q} &{} \cdots &{} &{} n_{2}^{q}\end{array}\right| _{q+1}, \end{aligned}$$

and \(q+1=n_{2}-n_{1}+1\) is number of the stencil points. According to the formula of Vandermonde determinant [22], \(|A|=\prod _{l=1}^{q}l!>0\).

$$\begin{aligned} |B|=\left| \begin{array}{lllll} 0 &{} 1 &{} \ldots &{} &{} 1\\ 1 &{} n_{1}+1 &{} &{} &{} n_{2}\\ 0 &{} \vdots &{} \ddots &{} &{} \vdots \\ \vdots \\ 0 &{} (n_{1}+1)^{q} &{} \cdots &{} &{} n_{2}^{q} \end{array}\right| _{q+1}=-\left| \begin{array}{lllll} 1 &{} 1 &{} \cdots &{} &{} 1\\ (n_{1}+1)^{2} &{} (n_{1}+2)^{2} &{} \ldots &{} &{} n_{2}^{2}\\ (n_{1}+1)^{3} &{} (n_{1}+2)^{3} &{} \cdots &{} &{} n_{2}^{3}\\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ (n_{1}+1)^{q} &{} (n_{1}+2)^{q} &{} \cdots &{} &{} n_{2}^{q} \end{array}\right| _{q}. \end{aligned}$$

Akin to the solving procedure of Vandermonde determinant [22],

$$\begin{aligned}&\left| \begin{array}{ccccc} 1 &{} 1 &{} \cdots &{} &{} 1\\ d_{1}^{2} &{} d_{2}^{2} &{} \cdots &{} &{} d_{n}^{2}\\ d_{1}^{3} &{} d_{2}^{3} &{} \cdots &{} &{} d_{n}^{3}\\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ d_{1}^{n} &{} d_{2}^{n} &{} \cdots &{} &{} d_{n}^{n} \end{array}\right| _{n}\\&\quad = \left| \begin{array}{ccccc} 1 &{} 1 &{} \cdots &{} &{} 1\\ 0 &{} (d_{2}+d_{1})(d_{2}-d_{1}) &{} \cdots &{} &{} (d_{n}+d_{1})(d_{n}-d_{1})\\ 0 &{} d_{2}^{2}(d_{2}-d_{1}) &{} \cdots &{} &{} d_{n}^{2}(d_{n}-d_{1})\\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ 0 &{} d_{2}^{n-1}(d_{2}-d_{1}) &{} \cdots &{} &{} d_{n}^{n-1}(d_{n}-d_{1}) \end{array}\right| _{n}\\&\quad = \prod _{p=2}^{n}(d_{p}-d_{1})\left| \begin{array}{cccc} d_{2}+d_{1} &{} d_{3}+d_{1} &{} \cdots &{} d_{n}+d_{1}\\ d_{2}^{2} &{} d_{3}^{2} &{} \cdots &{} d_{n}^{2}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ d_{2}^{n-1} &{} d_{3}^{n-1} &{} \cdots &{} d_{n}^{n-1} \end{array}\right| _{n-1}\\&\quad = \prod _{p=2}^{n}(d_{p}-d_{1})\left( \left| \begin{array}{cccc} d_{2} &{} d_{3} &{} \cdots &{} d_{n}\\ d_{2}^{2} &{} d_{3}^{2} &{} \cdots &{} d_{n}^{2}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ d_{2}^{n-1} &{} d_{3}^{n-1} &{} \cdots &{} d_{n}^{n-1} \end{array}\right| _{n-1}+\left| \begin{array}{cccc} d_{1} &{} d_{1} &{} \cdots &{} d_{1}\\ d_{2}^{2} &{} d_{3}^{2} &{} \cdots &{} d_{n}^{2}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ d_{2}^{n-1} &{} d_{3}^{n-1} &{} \cdots &{} d_{n}^{n-1} \end{array}\right| _{n-1}\right) \\&\quad = \prod _{p=2}^{n}(d_{p}-d_{1})\left( \prod _{l=2}^{n}d_{l} \left| \begin{array}{cccc} 1 &{} 1 &{} \cdots &{} 1\\ d_{2} &{} d_{3} &{} \cdots &{} d_{n}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ d_{2}^{n-1} &{} d_{3}^{n-1} &{} \cdots &{} d_{n}^{n-1} \end{array}\right| _{n-1}+d_{1}\left| \begin{array}{cccc} 1 &{} 1 &{} \cdots &{} 1\\ d_{2}^{2} &{} d_{3}^{2} &{} \cdots &{} d_{n}^{2}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ d_{2}^{n-1} &{} d_{3}^{n-1} &{} \cdots &{} d_{n}^{n-1} \end{array}\right| _{n-1}\right) . \end{aligned}$$

Then

$$\begin{aligned} |B|&= -\left| \begin{array}{ccccc} 1 &{} 1 &{} \cdots &{} &{} 1\\ (n_{1}+1)^{2} &{} (n_{1}+2)^{2} &{} \ldots &{} &{} n_{2}^{2}\\ (n_{1}+1)^{3} &{} (n_{1}+2)^{3} &{} \cdots &{} &{} n_{2}^{3}\\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ (n_{1}+1)^{q} &{} (n_{1}+2)^{q} &{} \cdots &{} &{} n_{2}^{q} \end{array}\right| _{q}\\&= -(q-1)!(n_{1}+1)\left| \begin{array}{ccccc} 1 &{} 1 &{} \cdots &{} &{} 1\\ (n_{1}+2)^{2} &{} (n_{1}+3)^{2} &{} \ldots &{} &{} n_{2}^{2}\\ (n_{1}+2)^{3} &{} (n_{1}+3)^{3} &{} \cdots &{} &{} n_{2}^{3}\\ \vdots &{} \vdots &{} \ddots &{} &{} \vdots \\ (n_{1}+2)^{q-1} &{} (n_{1}+3)^{q-1} &{} \cdots &{} &{} n_{2}^{q-1} \end{array}\right| _{q-1}\\&\cdots \\&= -(q-1)!(n_{1}+1)\cdot (q-2)!(n_{1}+2)\cdot \cdots \cdot (n_{2}+1)!(-1)\\&\cdot n_{2}!\left( n_{2}!\left| \begin{array}{cccc} 1 &{} 1 &{} \cdots &{} 1\\ 1 &{} 2 &{} \cdots &{} n_{2}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 1 &{} 2^{n_{2}-1} &{} \cdots &{} n_{2}^{n_{2}-1} \end{array}\right| _{n_{2}}+0\right) \\&= (-1)^{-n_{1}}(-n_{1}-1)!\cdot \prod _{l=1}^{q-1}l!\cdot n_{2}!\cdot \prod _{l=1}^{n_{2}}l! \end{aligned}$$

Therefore \(\text{ sgn }(a_{n_{1}})=\text{ sgn }(|B|)=(-1)^{-n_{1}}=\text{ sgn }\left( g_{-n_{1}}^{-n_{1}}\right) \). As a result, \(b_{-n_{1}}=a_{n_{1}}g_{-n_{1}}^{-n_{1}}>0\). Thus, the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Zhao, N. A Stability Criterion for Semi-Discrete Difference Schemes of Hyperbolic Conservation Laws on Uniform Grids. J Sci Comput 58, 450–471 (2014). https://doi.org/10.1007/s10915-013-9742-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9742-8

Keywords

Mathematics Subject Classification

Navigation