Skip to main content
Log in

Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We provide an error analysis of two methods for time stepping the wave equation. These are based on the Hybridizable Discontinuous Galerkin (HDG) method to discretize in space, and the continuous Galerkin method to discretize in time. Two variants of HDG are proposed: a dissipative method based on the standard numerical flux used for elliptic problems, and a non-dissipative method based on a new choice of the flux involving time derivatives. The analysis of the fully discrete problem is based on simplified arguments using projections rather than explicit interpolants used in previous work. Some numerical results are shown that illuminate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akrivis, G., Makridakis, C., Nochetto, R.H.: Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118(3), 429–456 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3 ed. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

  3. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comp. 79(271), 1351–1367 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave equation. Math. Comput. 65(214), 491–506 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Geveci, T.: On the application of mixed finite element methods to the wave equations. RAIRO Modél. Math. Anal. Numér. 22(2), 243–250 (1988)

    MATH  MathSciNet  Google Scholar 

  7. Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49(3), 291–310 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grote, M.J., Mitkova, T.: Explicit local time-stepping methods for Maxwell’s equations. J. Comp. Appl. Math. 234(12), 3283–3302 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems, 2 ed., Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

  10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential–Algebraic Problems, 2 ed. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)

  11. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karakashian, O., Makridakis, C.: Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comput. 74(249), 85–102 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38(3), 837–875 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Griesmaier.

Appendix

Appendix

1.1 Projection Estimate on the Element Boundaries

In this section we give a proof of the projection estimate on the element boundaries (4c). Our arguments rest on those used in [4] to prove the corresponding interior estimates (4a) and (4b).

We start with a slight modification of Lemma A.2 of [4].

Lemma 6

Let \(K \in \mathcal{T _h}, \tau \) as introduced in Sect. 2.1, and suppose

$$\begin{aligned} p \in \mathcal{P }_k^\perp (K) := \{ \phi \in \mathcal{P }_k(K) \;|\; (\phi , w)_K = 0 \; for \,all\, w \in \mathcal{P }_{k-1}(K) \} \end{aligned}$$

satisfies

$$\begin{aligned} \langle \tau p, \phi \rangle _{\partial K} = b(\phi ) \qquad for\, all\, \phi \in P_k^\perp (K), \end{aligned}$$

where \(b: \mathcal{P }_k^\perp (K) \rightarrow \mathbb R \) is linear. Then

$$\begin{aligned} \Vert \tau p \Vert _{\partial K} \le C h_K^{1/2} \Vert b\Vert , \end{aligned}$$

where \(\Vert b\Vert \) denotes the operator norm of \(b\) with respect to the \(L^2\)-norm on \(\mathcal{P }_k^\perp (K)\).

Proof

Denoting by \(F\) the edge/face of \(K\) at which \(\tau = \tau _K^{\max }\),

$$\begin{aligned} \Vert \tau p \Vert _{\partial K}^2 = \langle \tau p, \tau p \rangle _{\partial K} \le \tau _K^{\max } \langle \tau p, p \rangle _{\partial K} = \tau _K^{\max } b(p) \le \tau _K^{\max } \Vert b\Vert \Vert p\Vert _K. \end{aligned}$$

Using the estimate

$$\begin{aligned} \Vert p\Vert _K \le C h_K^{1/2} \Vert p\Vert _F \qquad \text{ for } \text{ all } p \in \mathcal{P }_K^\perp (K), \end{aligned}$$

which has been shown in Lemma A.1 of [4], gives

$$\begin{aligned} \Vert \tau p \Vert _{\partial K}^2 \le \tau _K^{\max } \Vert b\Vert C h_K^{1/2} \Vert p\Vert _F = \Vert b\Vert C h_K^{1/2} \Vert \tau _K^{\max } p\Vert _F \le C h_K^{1/2} \Vert b\Vert \Vert \tau p\Vert _{\partial K}. \end{aligned}$$

\(\square \)

The following proposition should be compared to Proposition A.2 of [4].

Proposition 1

Suppose \(k \ge 0\), and let \(K\in \mathcal{T _h}\) and \(\tau \) as introduced in Sect. 2.1. Then,

$$\begin{aligned} \Vert \tau (\varPi _W w - w)\Vert _{\partial K} \le C h_K^{1/2} \bigl ( h_K^{\ell _{\varvec{z}}} |{{\mathrm{\nabla \cdot }}}{\varvec{z}}|_{H^{\ell _{\varvec{z}}}(K)} + \tau _K^{\max } h_K^{\ell _w} |w|_{H^{\ell _w+1}(K)} \bigr ) \end{aligned}$$

for \(\ell _w, \ell _{\varvec{z}}\in [0,k]\).

Proof

Denoting \(\delta ^w := \varPi _W w - w_k\), where \(w_k\) is the \(L^2\)-projection of \(w\) onto \(\mathcal{P }_k(K)\), we have

$$\begin{aligned} \Vert \tau (\varPi _W w - w) \Vert _{\partial K} \le \Vert \tau (w - w_k) \Vert _{\partial K} + \Vert \tau \delta ^w \Vert _{\partial K}. \end{aligned}$$

Applying a trace inequality and the approximation properties of the \(L^2\)-projection the first term can be estimated by

$$\begin{aligned}&\Vert \tau (w - w_k) \Vert _{\partial K} \le \tau _K^{\max } \Vert w - w_k \Vert _{\partial K} \le \tau _K^{\max } h_K^{-1/2} \left( \Vert w - w_k\Vert _K + h_K |w - w_k|_{H^1(K)} \right) \\&\quad \le C \tau _K^{\max } h_K^{\ell _w+1/2} |w|_{H^{\ell _w+1}(K)}. \end{aligned}$$

To estimate the second term we recall that on each element \(K \in \mathcal{T _h}\) the component \(\varPi _W w\) satisfies

$$\begin{aligned} (\varPi _W w, \phi )_K&= (w, \phi )_K \qquad \qquad \text{ for } \text{ all } \phi \in P_{k-1}(K),\\ \langle \tau \varPi _W w, \phi \rangle _{\partial K}&= ({{\mathrm{\nabla \cdot }}}{\varvec{z}}, \phi )_K + \langle \tau w, \phi \rangle _{\partial K} \qquad \text{ for } \text{ all } \phi \in P_k^\perp (K) \end{aligned}$$

(see Proposition A.1 of [4]). This implies that \(\delta ^w \in \mathcal{P }_k^\perp \) and

$$\begin{aligned} \langle \tau \delta ^w, \phi \rangle _{\partial K} = b_w(\phi ) + b_{\varvec{z}}(\phi )\qquad \text{ for } \text{ all } \phi \in \mathcal{P }_k^\perp (K), \end{aligned}$$

where \(b_w(\phi ) := \langle \tau (w-w_k), \phi \rangle _{\partial K}\) and \(b_{\varvec{z}}(\phi ) := ({{\mathrm{\nabla \cdot }}}{\varvec{z}}, \phi )_K\). It has been shown in the proof of Proposition A.2 in [4] that

$$\begin{aligned} \Vert b_w\Vert \le C \tau _K^{\max } h_K^{\ell _w} |w|_{H^{\ell _w+1}(K)} \quad \text{ and } \quad \Vert b_{\varvec{z}}\Vert \le C h_K^{\ell _{\varvec{z}}} |{{\mathrm{\nabla \cdot }}}{\varvec{z}}|_{H^{\ell _{\varvec{z}}}(K)}. \end{aligned}$$

Since by Lemma 6,

$$\begin{aligned} \Vert \tau \delta ^w \Vert _{\partial K} \le C h_K^{1/2} ( \Vert b_w\Vert + \Vert b_{\varvec{z}}\Vert ), \end{aligned}$$

this ends the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesmaier, R., Monk, P. Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space. J Sci Comput 58, 472–498 (2014). https://doi.org/10.1007/s10915-013-9741-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9741-9

Keywords

Mathematics Subject Classification

Navigation