Skip to main content
Log in

\(H\)-adaptive Mesh Method with Double Tolerance Adaptive Strategy for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The numerical method used to solve hyperbolic conservation laws is often an explicit scheme. As a commonly used technique to improve the quality of numerical simulation, the \(h\)-adaptive mesh method is adopted to resolve sharp structures in the solution. Since the computational costs of altering the mesh and solving the PDEs are comparable, too often the mesh adaption triggered may bring down the overall efficiency of solving hyperbolic conservation laws using \(h\)-adaptive mesh method. In this paper, we propose a so-called double tolerance adaptive strategy to optimize the overall numerical efficiency by reducing the number of mesh adaptions, as well as preserving the quality of the numerical solution. Numerical results are presented to demonstrate the robustness and effectiveness of our \(h\)-adaptive algorithm using the double tolerance adaptive strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  MATH  Google Scholar 

  5. Sleigh, P.A., Gaskell, P.H., Berzins, M., Wright, N.G.: An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Comput. Fluids 27(4), 479–508 (1998)

    Article  MATH  Google Scholar 

  6. Skoula, Z.D., Borthwick, A.G.L., Moutzouris, C.I.: Godunov-type solution of the shallow water equations on adaptive unstructured triangular grids. Int. J. Comput. Fluid Dyn. 20(9), 621–636 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liang, Q., Borthwick, A.G.L.: Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Comput. Fluids 38(2), 221–234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ganesh, N., Balakrishnan, N.: A \(h\)-adaptive algorithm using residual error estimates for fluid flows. Commun. Comput. Phys. 13(2), 461–478 (2013)

    MathSciNet  Google Scholar 

  9. Tang, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, E., Li, J., Tang, H.: Accuracy of the adaptive GRP scheme and the simulation of 2-d Riemann problems for compressible Euler equations. Commun. Comput. Phys. 10(3), 577–606 (2011)

    MathSciNet  Google Scholar 

  11. Forestieri, G., Guardone, A., Isola, D., Marulli, F., Quaranta, G.: Numerical simulation of compressible vortical flows using a conservative unstructured-grid adaptive scheme. Commun. Comput. Phys. 12(3), 866–884 (2012)

    Google Scholar 

  12. Kroner, D.: Numerical Schemes for Conservation Laws. Wiley, Chichester (1997)

    Google Scholar 

  13. Tang, H.Z., Warnecke, G.: On convergence of a domain decomposition method for hyperbolic conservation laws. SIAM J. Numer. Anal. 45(4), 1453–1471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berger, M.J., LeVeque, R.J.: Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35(6), 2298–2316 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Boor, C.: Good Approximation by Splines with Variable Knots II, Volume 363 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1974)

    Google Scholar 

  16. Burchard, H.G.: Splines (with optimal knots) are better. Appl. Anal. 3(4), 309–319 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Van Leer, B.: On the relation between the upwind-differencing schemes of Godunov, Enguist-Osher and Roe. SIAM J. Sci. Stat. Comput. 5(1), 1–20 (1985)

    Google Scholar 

  18. Deng, J., Li, R., Sun, T., Wu, S.N.: Robust a simulation for shallow flows with friction on rough topography. Numer. Math. Theory Methods Appl. (2012)

  19. Li, R., Liu, W.B.: http://dsec.pku.edu.cn/~rli/AFEPack-snapshot.tar.gz

  20. Li, R.: On multi-mesh h-adaptive methods. J. Sci. Comput. 24(3), 321–341 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rogers, B.D., Borthwick, A.G.L., Taylor, P.H.: Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J. Comput. Phys. 192(2), 422–451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liang, Q., Borthwick, A.G.L., Stelling, G.: Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids. Int. J. Numer. Methods Fluids 46(2), 127–162 (2004)

    Article  MATH  Google Scholar 

  23. Hubbard, M.E.: Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys. 155(1), 54–74 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kawahara, M., Umetsu, T.: Finite element method for moving boundary problems in river flow. Int. J. Numer. Methods Fluids 6(6), 365–386 (1986)

    Article  MATH  Google Scholar 

  25. Brufau, P., Vázquez-Cendón, M.E., García-Navarro, P.: A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 39(3), 247–275 (2002)

    Article  MATH  Google Scholar 

  26. Hervouet, J.M., Petitjean, A.: Malpasset dam-break revisited with two-dimensional computations. J. Hydraul. Res. 37(6), 777–788 (1999)

    Article  Google Scholar 

  27. Hervouet, J.M.: Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method. John Wiley & Sons Inc, London (2007)

    Book  Google Scholar 

  28. Valiani, A., Caleffi, V., Zanni, A.: Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. J. Hydraul. Eng. 128(5), 460–472 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by ExxonMobil Upstream Research Company. We thank Dr. Tao Sun for his informative and instructive discussion with us. We would like to thank the anonymous referees sincerely for their suggestions and comments so constructive and detailed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Wu, S. \(H\)-adaptive Mesh Method with Double Tolerance Adaptive Strategy for Hyperbolic Conservation Laws. J Sci Comput 56, 616–636 (2013). https://doi.org/10.1007/s10915-013-9692-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9692-1

Keywords

Navigation