Skip to main content
Log in

A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we develop a new sixth-order WENO scheme by adopting a convex combination of a sixth-order global reconstruction and four low-order local reconstructions. Unlike the classical WENO schemes, the associated linear weights of the new scheme can be any positive numbers with the only requirement that their sum equals one. Further, a very simple smoothness indicator for the global stencil is proposed. The new scheme can achieve sixth-order accuracy in smooth regions. Numerical tests in some one- and two-dimensional benchmark problems show that the new scheme has a little bit higher resolution compared with the recently developed sixth-order WENO-Z6 scheme, and it is more efficient than the classical fifth-order WENO-JS5 scheme and the recently developed sixth-order WENO6-S scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Acker, F., Borges, R., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726–753 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S., Garain, S.K., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Donat, R., Marquina, A.: Capturing shock reflections: an improved flux formula. J. Comput. Phys. 125, 42–58 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fardipour, K., Mansour, K.: A modified seventh-order WENO scheme with new nonlinear weights for hyperbolic conservation laws. Comput. Math. Appl. 78, 3748–3769 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng, H., Hu, F.X., Wang, R.: A new mapped weighted essentially non-oscillatory scheme. J. Sci. Comput. 51, 449–473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, H., Huang, C., Wang, R.: An improved mapped weighted essentially non-oscillatory scheme. Appl. Math. Comput. 232, 453–468 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2007)

    Article  MATH  Google Scholar 

  10. Hu, F.X.: The 6th-order weighted ENO schemes for hyperbolic conservation laws. Comput. Fluids 174, 34–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, C., Chen, L.L.: A new adaptively central-upwind sixth-order WENO scheme. J. Comput. Phys. 357, 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, G.S., Wu, C.C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150, 561–594 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martin, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  MATH  Google Scholar 

  19. Nonomura, T., Kitamura, K., Fujii, K.: A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling. J. Comput. Phys. 258, 95–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, J., Zhai, C.L., Ni, G.X., Yong, H., Shen, Y.Q.: An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations. Comput. Fluids 179, 34–51 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schulz-Rinne, C.-W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394–1414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shu, C.-W., Osher, S.: Efficient implement of essentially non-oscillatory shock capturing schemes. II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, Z.Y., Inaba, S., Xiao, F.: Boundary variation diminishing (BVD) reconstruction: a new approach to improve Godunov schemes. J. Comput. Phys. 322, 309–325 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, pp. 87–114. Springer, Berlin (2013)

    Google Scholar 

  27. Wang, Y.H., Du, Y.L., Zhao, K.L., Yuan, L.: A new 6th-order WENO scheme with modified stencils. Comput. Fluids 208, 104625 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Woodward, P.R., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, J., Qiu, J.X.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (91641107, 91852116, 12071470) and Fundamental Research of Civil Aircraft (MJ-F-2012-04) of Ministry of Industrialization and Information of China. The computations were partly done on the high-performance computers of State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yuan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Du, Y. & Yuan, L. A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws. Commun. Appl. Math. Comput. 5, 3–30 (2023). https://doi.org/10.1007/s42967-020-00112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00112-3

Keywords

Mathematics Subject Classification

Navigation