Skip to main content
Log in

Cell Cycle Control and Bifurcation for a Free Boundary Problem Modeling Tissue Growth

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a free boundary problem for a system of partial differential equations, which arise in a model of cell cycle with a free boundary. For the quasi steady state system, it depends on a positive parameter \(\beta \), which describes the signals from the microenvironment. Upon discretizing this model, we obtain a family of polynomial systems parameterized by \(\beta \). We numerically find that there exists a radially-symmetric stationary solution with boundary \(r = R\) for any given positive number \(R\) by using numerical algebraic geometry method. By homotopy tracking with respect to the parameter \(\beta \), there exist branches of symmetry-breaking stationary solutions. Moreover, we proposed a numerical algorithm based on Crandall–Rabinowitz theorem to numerically verify the bifurcation points. By continuously changing \(\beta \) using a homotopy, we are able to compute non-radially symmetric solutions. We additionally discuss control function \(\beta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ayati, B.P., Webb, G.F., Anderson, A.R.A.: Computational methods and results for structured multiscale models of tumor invasion. Multiscale Model. Simul. 5, 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. www.nd.edu/~sommese/bertini

  3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Software for numerical algebraic geometry: a paradigm and progress towards its implementation. In software for algebraic geometry. IMA Vol. Math. Appl. 148, 1–14 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46, 722–746 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Stepsize control for path tracking. In: Bates, D., Besana, G., Di Rocco, S., Wampler, C. (eds.) Interactions of classical and numerical algebraic geometry. Contemp. Math. 496, 21–31 (2009)

  6. Bazally, B., Friedman, A.: Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: an application to a model of tumor growth. Indiana Univ. Math. J 52, 1265–1304 (2003)

    Article  MathSciNet  Google Scholar 

  7. Burton, A.: Rate of growth of solid tumors as a problem of diffusion. Growth 30, 157–176 (1966)

    Google Scholar 

  8. Byrne, H., Chaplain, M.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181 (1995)

    Article  MATH  Google Scholar 

  9. Byrne, H., Gourley, S.: The role of growth factors in avascular tumour growth. Math. Comput. Model. 26, 35–55 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaplain, M.: Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math. Comput. Model. 23, 47–87 (1996)

    Article  MATH  Google Scholar 

  11. Chaplain, M., Britton, N.: On the concentration profile of a growth inhibitory factor in multicell spheroids. Math. Biosci. 115, 233–243 (1993)

    Article  MATH  Google Scholar 

  12. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fontelos, M., Friedman, A.: Symmetry-breaking bifurcations of free boundary problems in three dimensions. Asymptot. Anal. 35, 187–206 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Friedman, A., Hu, B.: Bifurcation from stability to instability for a free boundary problem arising in a tumor model. Arch. Ration. Mech. Anal. 180, 643–664 (2006)

    Article  MathSciNet  Google Scholar 

  15. Friedman, A., Hu, B.: The role of oxygen in tissue maintenance: a mathematical model. Math. Models Methods Appl. Sci. 18, 1409–1441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, A., Hu, B.: Stability and instability of Liapunov–Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model. Trans. Am. Math. Soc. 360, 5291–5342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Friedman, A., Hu, B., Kao, C.Y.: Cell cycle control at the first restriction point and its effect on tissue growth. J. Math. Biol. 60, 881–907 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedman, A.: A multiscale tumor model. Interfaces Free Bound. 10, 245–262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedman, A.: A free boundary problem for a coupled system of ellipitc, parabolic and Stokes equations modeling tumor growth. Interfaces Free Bound. 8, 247–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedman, A.: Free boundary problems associated with multisacle tumor models. Math. Model. Nat. Phenom. 4, 134–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Friedman, A., Reitich, F.: Analysis of a mathematical model for growth of tumor. J. Math. Biol. 38, 262–284 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 52, 317–340 (1972)

    Google Scholar 

  23. Greenspan, H.P.: On the growth of cell culture and solid tumors. Theor. Biol. 56, 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  24. Hao, W., Hauenstein, J.D., Hu, B., Liu, Y., Sommese, A.J., Zhang, Y.-T.: Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core. Nonlinear Anal. 13, 694–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hao, W., Hauenstein, J.D., Hu, B., McCoy, T., Sommese, A.J.: Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation. J. Comput. Appl. Math., 237, 326–334 (2013). doi:10.1016/j.cam.2012.06.001

    Google Scholar 

  26. Hao, W., Hauenstein, J.D., Hu, B., Sommese, A.J.: A three-dimensional steady-state tumor system. Appl. Math. Comp. 218, 2661–2669 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hogea, C.S., Murray, B.T., Sethian, J.A.: Simulating complex tumor dynamics from avscular to vascular growth using a general level-set method. J. Math. Biol. 53, 86–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, X., Cristini, V., Nie, Q., Lowengrub, J.: Nonlinear three-dimensional simulation of solid tumor growth. Discret. Contin. Dyn. Syst. B 7, 581–604 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. McElwain, D.J.S., Pettet G.J.: Cell migration in multicell spheroids: swimming against the tide. Bull. Math. Biol. 55, 655–674 (1993)

    Google Scholar 

  30. Pettet, G.J., Please, C.P., Tindall, M.J., McElwain, D.L.S.: The migration of cells in multicell tumor spheroids. Bull. Math. Biol. 63, 231–257 (2001)

    Article  Google Scholar 

  31. Sommese, A.J., Wampler, C.W.: The numerical solution of systems of polynomials arising in engineering and science. World Scientific Publishing Co., Hackensack, NJ (2005)

    Book  MATH  Google Scholar 

  32. Thompson, K., Byrne, H.: Modelling the internalisation of labelled cells in tumour spheroids. Bull. Math. Biol. 61, 601–623 (1999)

    Article  Google Scholar 

  33. Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors Wenrui Hao and Anrew J. Sommese were supported by the Dunces Chair of the University of Notre Dame. We would like to express our thanks to Professor Avner Friedman whose valuable comments and suggestions helped greatly to improve this article. We are grateful to two anonymous referees for their careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenrui Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, W., Hu, B. & Sommese, A.J. Cell Cycle Control and Bifurcation for a Free Boundary Problem Modeling Tissue Growth. J Sci Comput 56, 350–365 (2013). https://doi.org/10.1007/s10915-012-9678-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9678-4

Keywords

Navigation