Skip to main content
Log in

Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A comprehensive continuum model of solid tumor evolution and development is investigated in detail numerically, both under the assumption of spherical symmetry and for arbitrary two-dimensional growth. The level set approach is used to obtain solutions for a recently developed multi-cell transport model formulated as a moving boundary problem for the evolution of the tumor. The model represents both the avascular and the vascular phase of growth, and is able to simulate when the transition occurs; progressive formation of a necrotic core and a rim structure in the tumor during the avascular phase are also captured. In terms of transport processes, the interaction of the tumor with the surrounding tissue is realistically incorporated. The two-dimensional simulation results are presented for different initial configurations. The computational framework, based on a Cartesian mesh/narrow band level-set method, can be applied to similar models that require the solution of coupled advection-diffusion equations with a moving boundary inside a fixed domain. The solution algorithm is designed so that extension to three-dimensional simulations is straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson D., Sethian J.A.: A fast level set method for propagating interfaces. J. Comp. Phys. 118, 269–277 (1995)

    Article  Google Scholar 

  2. Adalsteinsson D., Sethian J.A.: The fast construction of extension velocities in level set methods. J. Comp. Phys. 148, 2–22 (1999)

    Article  Google Scholar 

  3. Adam J.: General aspects of modeling tumor growth and immune response. In: Adam, J., Bellomo, N. (eds.), A Survey of models on tumor immune systems dynamics, Birkhäuser, Boston, pp. 15–88 (1997)

  4. Alexiades V.: Overcoming the stability restriction of explicit schemes via super-time-stepping. Proceedings of the Second International Conference on Dynamic Systems and Applications, 1995

  5. Araujo R.P., McElwain D.L.S.: A history of the study of tumor growth: The Contribution of Mathematical Modeling. Bull. Math Biol. 66, 1039–1091 (2004)

    Article  Google Scholar 

  6. Belomo N., Preziosi L.: Modeling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. and Comp. Model. 32, 413–452 (2000)

    Article  Google Scholar 

  7. Byrne, H.M., Chaplain M.A.J.: Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Mathl. Comput. Modeling 24, 1–17 (1996)

    Article  MATH  Google Scholar 

  8. Byrne H.M., King J.R., McElwain D.L.S., Preziosi L.: A two-phase model of solid tumor growth. Appl. Math. Letters 16, 567–573 (2003)

    Article  Google Scholar 

  9. Byrne H.M., Preziosi L.: Modeling solid tumour growth using the theory of mixtures. IMA J. Mathl. Med. Biol. 20, 341–366 (2003)

    Google Scholar 

  10. Calhoun D.: A Cartesian grid method for solving the two-dimensional stream function-vorticity equations in irregular regions. J. Comp. Phys. 176, 231–275 (2002)

    Article  Google Scholar 

  11. Chaplain M.A.J., Preziosi, L.: Macroscopic modeling of the growth and development of tumor masses, preprint, 2001

  12. Chen S., Merriman B., Osher S. , Smereka P., A Simple level set method for solving stefan problems. J. Comp. Phys. 135, 8–29 (1997)

    Google Scholar 

  13. Chopp D.L.: Computing minimal surfaces via level set curvature flow. J. Comp. Phys. 106, 77–91 (1993)

    Article  Google Scholar 

  14. Cristini, V., Lowengrub J., Nie Q : Nonlinear simulation of tumor growth. J. Math. Biol. 46,191–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. De Angelis E., Preziosi L.: Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem. Math. Mod. Meth. Appl. Sci. 10, 379–407 (2000)

    Google Scholar 

  16. Folkman J.: The vascularization of tumors. Sci. Am. 236, 58–73 (1976)

    Google Scholar 

  17. Hogea C.S., Murray B.T., Sethian J.A.: Implementation of the level set method for continuum mechanics based tumor growth models. Fluid Dyn. and Matls. Proc. 1, 109–130 (2005)

    Google Scholar 

  18. Hou T.Y., Li Z., Osher S., Zhao H.: A Hybrid method for moving interface problems with application to Hele-Shaw flow. J. Comp. Phys. 134, 236–252 (1997)

    Article  Google Scholar 

  19. Kansal A.R., Torquato S., Harsh IV G.R., Chiocca E.A., Deisboeck T.S., Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 203, 367–382 (2000)

    Google Scholar 

  20. Kim Y., Goldenfeld N., Dantzig J.: Computation of dendritic microstructures using a level set method. Phys. Rev. E, 62, 2471–2474 (2000)

    Article  MathSciNet  Google Scholar 

  21. LeVeque R.J., Li Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Num. Analysis 31, 1019–1044 (1994)

    Article  Google Scholar 

  22. LeVeque R.J.: Numerical methods for Conservations Laws. Birkhäuser, 1992

  23. Malladi R., Sethian J.A., Vemuri B.C.: Shape Modeling with Front Propagation: A Level Set Approach. IEEE Trans. on Pattern Analysis 17, 158–175 (1995)

    Article  Google Scholar 

  24. Mansury Y., Deisboeck T.S.: Simulating structure-function patterns of malignant brain tumors. Physica A 331, 219–232 (2004)

    Article  Google Scholar 

  25. Morton K.W., Mayers D.F.: Numerical solution of partial differential equations. Cambridge University Press, 1994

  26. Osher S., Fedkiw R.: Level Set methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, 2002

  27. Osher S., Sethian J.A.: Fronts propagating with curvature-dependent speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comp. Phys. 79, 12–49 (1988)

    Article  Google Scholar 

  28. Pao C.V.: Nonlinear parabolic and elliptic equations. Plenum Press, 1992

  29. Preziosi L.: Cancer modeling and simulation. Chapman and Hall 2003

  30. Richtmyer R.D., Morton, K.W.: Difference methods for initial value problems. Interscience Publishers, 1967

  31. Sethian J.A.: Level set Methods and Fast Marching Methods. Cambridge University Press, 1999

  32. Sethian J.A.: Curvature and the evolution of front. Comm. in Math. Phys. 101, 487–499 (1985)

    Article  Google Scholar 

  33. Sethian J.A.: Numerical Methods for Propagating Fronts. In: Concus, P., Finn, R. (eds) Variational Methods for Free Surface Interfaces, Springer-Verlag, (1987)

  34. Sethian J.A.: A Fast marching level set method for Monotonically advancing fronts. Proceedings of the National Academy of Sciences 93, 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  35. Sethian J.A.: Evolution, Implementation, and application of level set and fast marching methods for advancing fronts. J. Comp. Phys. 169, 503–555 (2001)

    Article  Google Scholar 

  36. Shyy W., Udaykumar H.S., Madhukar M.R., Smith R.W.: Computational fluid dynamics with moving boundaries. Taylor&Francis, 1996

  37. Smith G.D.: Numerical solution of partial differential equations: finite difference methods. Oxford University Press, 1985

  38. Yanenko N.N.: The method of fractional time steps. Springer, 1971

  39. Thomas J.W.: Numerical partial differential equations – Finite difference methods. Springer, 1995

  40. Zheng X., Wise S.M., Cristini V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogea, C., Murray, B. & Sethian, J. Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J. Math. Biol. 53, 86–134 (2006). https://doi.org/10.1007/s00285-006-0378-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0378-2

Key words or phrases

Navigation