Skip to main content
Log in

Numerical Studies Based on Higher-Order Accuracy Lattice Boltzmann Model for the Complex Ginzburg-Landau Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a higher-order accuracy lattice Boltzmann model for the complex Ginzburg-Landau equation is proposed. In order to obtain higher-order accuracy of truncation error and to overcome the drawbacks of “error rebound” in the previous models, a new assumption of additional distribution is presented to improve the accuracy of the model for the complex partial differential equation with nonlinear source term. As results, the complex Ginzburg-Landau equation is recovered with the fourth-order accuracy of truncation error. Based on this model, the problems of a single spiral wave in two-dimensional (2D) space and a single scroll in three-dimensional (3D) space are implemented to test the lattice Boltzmann scheme. The comparisons between the LBM results and the Alternative Direction Implicit results are given in detail. The numerical examples show that assumptions of source term can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the complex Ginzburg-Landau equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier-Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986)

    Article  Google Scholar 

  2. Wolfram, S.: Cellular automaton fluids 1: Basic theory. J. Stat. Phys. 45, 471–526 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Higuera, F., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  4. Higuera, F., Jimenez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)

    Article  Google Scholar 

  5. Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK model for Navier-Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  6. Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Fluid Mech. 3, 314–322 (1998)

    Google Scholar 

  7. Chen, H.D., Chen, S.Y., Matthaeus, M.H.: Recovery of the Navier-Stokes equations using a lattice Boltzmann gas method. Phys. Rev. A 45, 5339–5342 (1992)

    Article  Google Scholar 

  8. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)

    Article  Google Scholar 

  9. Amati, G., Succi, S., Piva, R.: Massively parallel lattice-Boltzmann simulation of turbulent channel flow. Int. J. Mod. Phys. C 8, 869–877 (1997)

    Article  Google Scholar 

  10. Kandhai, D., Koponen, A., Hoekstra, A.G., et al.: Lattice-Boltzmann hydrodynamics on parallel systems. Comput. Phys. Commun. 111, 14–26 (1998)

    Article  MATH  Google Scholar 

  11. Shan, X.W., Chen, H.D.: Lattice Boltzmann model of simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)

    Article  Google Scholar 

  12. Luo, L.S.: Theory of the lattice Boltzmann method: lattice Boltzmann method for nonideal gases. Phys. Rev. E 62, 4982–4996 (2000)

    Article  MathSciNet  Google Scholar 

  13. Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows. J. Comput. Phys. (2006). doi:10.1016/j.jcp.2006.10.023

    MATH  Google Scholar 

  14. Ladd, A.: Numerical simulations of particle suspensions via a discretized Boltzmann equation, Part 2. Numerical results. J. Fluids Mech. 271, 311–339 (1994)

    Article  MathSciNet  Google Scholar 

  15. Filippova, O., Hanel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)

    Article  MATH  Google Scholar 

  16. Chen, S.Y., Chen, H.D., Martinez, D., et al.: Lattice Boltzmann model for simulation of magneto-hydrodynamics. Phys. Rev. Lett. 67, 3776–3779 (1991)

    Article  Google Scholar 

  17. Vahala, L., Vahala, G., Yepez, J.: Lattice Boltzmann and quantum lattice gas representations of one- dimensional magnetohydrodynamic turbulence. Phys. Lett. A 306, 227–234 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vahala, G., Keating, B., Soe, M., et al.: MHD turbulence studies using Lattice Boltzmann algorithms. Commun. Comput. Phys. 4, 624–646 (2008)

    Google Scholar 

  19. Dawson, S.P., SY, Chen, Doolen, G.D.: Lattice Boltzmann computations for reaction-diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)

    Article  Google Scholar 

  20. Cali, A., Succi, S., Cancelliere, A., et al.: Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. Phys. Rev. A 45, 5771–5774 (1992)

    Article  Google Scholar 

  21. Blaak, R., Sloot, P.M.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ayodele, S.G., Varnik, F., Raabe, D.: Lattice Boltzmann study of pattern formation in reaction-diffusion systems. Phys. Rev. E 83, 016702 (2011)

    Article  MathSciNet  Google Scholar 

  23. Zhang, J.Y., Yan, G.W.: A Lattice Boltzmann model for the reaction-diffusion equations with higher-order accuracy. J. Sci. Comput. (2011). doi:10.1007/s10915-011-9530-2

    Google Scholar 

  24. Cali, A., Succi, S., Cancelliere, A., et al.: Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. Phys. Rev. A 45, 5771–5774 (1992)

    Article  Google Scholar 

  25. Maier, R.S., Bernard, R.S., Grunau, D.W.: Boundary conditions for the lattice Boltzmann method. Phys. Fluids 6, 1788–1795 (1996)

    Article  Google Scholar 

  26. Succi, S., Foti, E., Higuera, F.J.: 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989)

    Article  Google Scholar 

  27. Sun, C.H.: Lattice-Boltzmann model for high speed flows. Phys. Rev. E 58, 7283–7287 (1998)

    Article  Google Scholar 

  28. Yan, G.W., Chen, Y.S., Hu, S.X.: Simple lattice Boltzmann model for simulating flows with shock wave. Phys. Rev. E 59, 454–459 (1999)

    Article  Google Scholar 

  29. Qu, K., Shu, Q., Chew, Y.T.: Alternative method to construct equilibrium distribution function in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 75, 036706 (2007)

    Article  MathSciNet  Google Scholar 

  30. Gan, Y.B., Xu, A.G., Zhang, G.C., Yu, X.J., Li, Y.J.: Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Physica A 387, 1721–1732 (2008)

    Article  Google Scholar 

  31. Yepez, J.: Lattice-gas quantum computation. Int. J. Mod. C 9, 1587–1596 (1998)

    Article  Google Scholar 

  32. Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63, 046702 (2001)

    Article  Google Scholar 

  33. Chopard, B., Luthi, P.O.: Lattice Boltzmann computations and applications to physics. Theor. Comput. Sci. 217, 115–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yan, G.W.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, J.Y., Yan, G.W., Shi, X.B.: Lattice Boltzmann model for wave propagation. Phys. Rev. E 80, 026706 (2009)

    Article  Google Scholar 

  36. Kwon, Y.W., Hosoglu, S.: Application of lattice Boltzmann method, finite element method, and cellular automata and their coupling to wave propagation problems. Comput. Struct. 86, 663–670 (2008)

    Article  Google Scholar 

  37. Yepez, J.: Quantum Lattice-gas model for the Burgers equation. J. Stat. Phys. 107, 203–224 (2002)

    Article  MATH  Google Scholar 

  38. Yepez, J.: Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity. Phys. Rev. A 74, 042322 (2006)

    Article  Google Scholar 

  39. Velivelli, A.C., Bryden, K.M.: Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger’s equation. Physica A 362, 139–145 (2006)

    Article  Google Scholar 

  40. Vahala, G., Yepez, J., Vahala, L.: Quantum lattice gas representation of some classical solitons. Phys. Lett. A 310, 187–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yan, G.W., Zhang, J.Y.: A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation. Math. Comput. Simul. 79, 1554–1565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws. Comput. Phys. Commun. 180, 1054–1062 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan, G.W., Yuan, L.: Lattice Bhatnagar-Gross-Krook model for the Lorenz attractor. Physica D 154, 43–50 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4, 471–509 (2005)

    Article  MathSciNet  Google Scholar 

  45. Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Physica D 69, 327–332 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Succi, S.: Lattice quantum mechanics: an application to Bose-Einstein condensation. Int. J. Mod. Phys. C 9, 1577–1585 (1998)

    Article  Google Scholar 

  47. Zhong, L.H., Feng, S.D., Dong, P., Gao S.T.: Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Phys. Rev. E 74, 036704 (2006)

    Article  Google Scholar 

  48. Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the nonlinear Schrödinger equation. J. Phys. A 40, 10393–10405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shi, B.: Lattice Boltzmann simulation of some nonlinear complex equations. In: LNCS, vol. 4487, pp. 818–825 (2007)

    Google Scholar 

  50. Yepez, J., Vahala, G., Vahala, L.: Vortex-antivortex pair in a Bose-Einstein condensate. Eur. Phys. J. Special Topics 171, 9–14 (2009)

    Article  Google Scholar 

  51. Yepez, J., Vahala, G., Vahala, L.: Twisting of filamentary vortex solitons demarcated by fast Poincaré recursion. Proc. SPIE 7342, 73420M (2009)

    Article  Google Scholar 

  52. Yepez, J., Vahala, G., Vahala, L.: Lattice quantum algorithm for the Schrödinger wave equation in 2+1 dimensions with a demonstration by modeling soliton instabilities. Quantum Inf. Process. 4, 457–469 (2005)

    Article  Google Scholar 

  53. Vahala, G., Vahala, L., Yepez, J.: Inelastic vector soliton collisions: a lattice-based quantum representation. Philos. Trans. R. Soc. A 362, 1677–1690 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vahala, G., Vahala, L., Yepez, J.: Quantum lattice representations for vector solitons in external potentials. Physica A 362, 215–221 (2006)

    Article  Google Scholar 

  55. Succi, S.: Numerical solution of the Schrödinger equation using discrete kinetic theory. Phys. Rev. E 53, 1969–1975 (1996)

    Article  Google Scholar 

  56. Yepez, J., Boghosian, B.: An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation. Comput. Phys. Commun. 146, 280–294 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Palpacelli, S., Succi, S., Spigler, R.: Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E 76, 036712 (2007)

    Article  Google Scholar 

  58. Palpacelli, S., Succi, S.: Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. Phys. Rev. E 77, 066708 (2008)

    Article  Google Scholar 

  59. Zhang, J.Y., Yan, G.W.: Lattice Boltzmann model for the complex Ginzburg-Landau equation. Phys. Rev. E 81, 066705 (2010)

    Article  MathSciNet  Google Scholar 

  60. Ipsen, M., Kramer, L., Sørensen, P.G.: Amplitude equations for description of chemical reaction-diffusion systems. Phys. Rep. 337, 193–235 (2000)

    Article  MATH  Google Scholar 

  61. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin, (1984)

    Book  MATH  Google Scholar 

  63. Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)

    Article  Google Scholar 

  64. Fewo, S.I., Kofane, T.C.: A collective variable approach for optical solitons in the cubic-quintic complex Ginzburg-Landau equation with third-order dispersion. Opt. Commun. 281, 2893–2906 (2008)

    Article  Google Scholar 

  65. Porsezian, K., et al.: Modulational instability in linearly coupled complex cubic-quintic Ginzburg-Landau equations. Chaos Solitons Fractals (2007). doi:10.1016/j.chaos.2007.09.086

    Google Scholar 

  66. Jiang, M.X., Wang, X.N., Ouyang, Q. et al.: Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system. Phys. Rev. E 69, 056202 (2004)

    Article  Google Scholar 

  67. Dai, Z.D., Li, Z.T., Liu, Z.J., Li, D.L.: Exact homoclinic wave and soliton solutions for the 2D Ginzburg-Landau equation. Phys. Lett. A 372, 3010–3014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhan, M., Luo, J.M., Gao, J.H.: Chirality effect on the global structure of spiral-domain patterns in the two-dimensional complex Ginzburg-Landau equation. Phys. Rev. E 75, 016214 (2007)

    Article  MathSciNet  Google Scholar 

  69. Dai, C.Q., Cen, X., Wu, S.S.: Exact solutions of discrete complex cubic Ginzburg-Landau equation via extended tanh-function approach. Comput. Math. Appl. 56, 55–62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang, S.L., Bambi, H., Zhang, H.: Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg-Landau equation. Phys. Rev. E 67, 16214 (2003)

    Article  Google Scholar 

  71. Gong, Y.F., Christini, D.J.: Antispiral waves in reaction-diffusion systems. Phys. Rev. Lett. 90, 088302 (2003)

    Article  Google Scholar 

  72. Brusch, L., Nicola, M.E., Bär, M.: Comment on antispiral waves in reaction-diffusion systems. Phys. Rev. Lett. 92, 89801 (2004)

    Article  Google Scholar 

  73. Kapral, R., Showalter, K. (eds.): Chemical Waves and Patterns. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  74. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwu Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yan, G. Numerical Studies Based on Higher-Order Accuracy Lattice Boltzmann Model for the Complex Ginzburg-Landau Equation. J Sci Comput 52, 656–674 (2012). https://doi.org/10.1007/s10915-011-9565-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9565-4

Keywords

Navigation