Skip to main content
Log in

Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A two-grid scheme based on mixed finite-element approximations to the incompressible Navier-Stokes equations is introduced and analyzed. In the first level the standard mixed finite-element approximation over a coarse mesh is computed. In the second level the approximation is post processed by solving a discrete Oseen-type problem on a finer mesh. The two-level method is optimal in the sense that, when a suitable value of the coarse mesh diameter is chosen, it has the rate of convergence of the standard mixed finite-element method over the fine mesh. Alternatively, it can be seen as a post processed method in which the rate of convergence is increased by one unit with respect to the coarse mesh. The analysis takes into account the loss of regularity at initial time of the solution of the Navier-Stokes equations in absence of nonlocal compatibility conditions. Some numerical experiments are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abboud, H., Girault, V., Sayah, T.: A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme. Numer. Math. 114, 189–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Ayuso, B., de Frutos, J., Novo, J.: Improving the accuracy of the mini-element approximation to Navier–Stokes equations. IMA J. Numer. Anal. 27, 198–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ayuso, B., García-Archilla, B., Novo, J.: The post processed mixed finite element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 43, 1091–1111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, E., Welfert, B.D.: A posteriori error estimates for the Stokes problem. SIAM J. Numer. Anal. 28, 591–623 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Bristeau, M.O., Franca, L.P., Gilbert Rogé, M.M.: A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Engrg. 96, 117–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Falk, R.S.: Stability of higher-order Hood–Taylor methods. SIAM J. Numer. Anal. 28, 581–590 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. de Frutos, J., García-Archilla, B., Novo, J.: The post processed mixed finite-element method for the Navier-Stokes equations: refined error bounds. SIAM J. Numer. Anal. 46, 201–230 (2007)

    Article  MathSciNet  Google Scholar 

  11. de Frutos, J., García-Archilla, B., Novo, J.: Postprocessing finite-element methods for the Navier-Stokes equations: the fully discrete case. SIAM J. Numer. Anal. 47, 596–621 (2008)

    Article  MathSciNet  Google Scholar 

  12. de Frutos, J., García-Archilla, B., Novo, J.: Accurate approximations to time-dependent nonlinear convection-diffusion problems. IMA J. Numer. Anal. 30, 1137–1158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Frutos, J., García-Archilla, B., Novo, J.: Nonlinear convection-diffusion problems: fully discrete approximations and a posteriori error estimates. IMA J. Numer. Anal. 31, 1402–1430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Frutos, J., García-Archilla, B., Novo, J.: Optimal error bounds for two-grid schemes applied to the Navier-Stokes equations. Preprint

  15. de Frutos, J., García-Archilla, B., Novo, J.: A posteriori error estimations for mixed finite-element approximations to the Navier-Stokes equations. J. Comput. Appl. Math. 236, 1103–1122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Frutos, J., Novo, J.: A spectral element method for the Navier-Stokes equations with improved accuracy. SIAM J. Numer. Anal. 38, 799–819 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. García-Archilla, B., Novo, J., Titi, E.S.: Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35, 941–972 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. García-Archilla, B., Novo, J., Titi, E.S.: An approximate inertial manifold approach to post processing Galerkin methods for the Navier–Stokes equations. Math. Comp. 68, 893–911 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. García-Archilla, B., Titi, E.S.: Postprocessing the Galerkin method: the finite-element case. SIAM J. Numer. Anal. 37, 470–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin, (1986)

    Book  MATH  Google Scholar 

  21. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25, 489–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hood, P., Taylor, C.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hou, Y., Li, K.: Postprocessing Fourier Galerkin method for the Navier-Stokes equations. SIAM J. Numer. Anal. 47, 1909–1922 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, Y., Lee, S.: Modified mini finite element for the Stokes problem in ℝ2 or ℝ3. Adv. Comput. Math. 12, 261–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Q., Hou, Y.: A two-level finite element method for the Navier-Stokes equations based on a new projection. Appl. Math. Model. 34, 383–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier-Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Layton, W., Lenferink, W.: Two-level Picard and modified Picard methods for the Navier-Stokes equations. Appl. Math. Comput. 80, 1–12 (1995)

    MathSciNet  Google Scholar 

  29. Margolin, L.G., Titi, E.S., Wynne, S.: The post processing Galerkin and nonlinear Galerkin methods—a truncation analysis point of view. SIAM J. Numer. Anal. 41, 695–714 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pierre, R.: Simple C 0 approximations for the computation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 68, 205–227 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pierre, R.: Regularization procedures of mixed finite element approximations of the Stokes problem. Numer. Methods Partial Differential Equations 5, 241–258 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Simo, J.C., Armero, F., Taylor, C.A.: Stable and time-dissipative finite element methods for the incompressible Navier-Stokes equations in advection dominated flows. Internat. J. Numer. Methods Engrg. 38, 1475–1506 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  34. Verfurth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)

    Article  MathSciNet  Google Scholar 

  35. Verfurth, R.: Multilevel algorithms for mixed problems II. Treatment of the mini-element. SIAM J. Numer. Anal. 25, 285–293 (1998)

    Article  MathSciNet  Google Scholar 

  36. Xu, J.: A novel two-grid method for semilinear techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Novo.

Additional information

Research of J. de Frutos was supported by Spanish MEC under grant MTM2010-14919 and by JCyL under grant VA001A10-1.

Research of B. García-Archilla was supported by Spanish MEC under grant MTM2009-07849.

Research of J. Novo was supported by Spanish MEC under grant MTM2010-14919.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Frutos, J., García-Archilla, B. & Novo, J. Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations. J Sci Comput 52, 619–637 (2012). https://doi.org/10.1007/s10915-011-9562-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9562-7

Keywords

Navigation