Skip to main content
Log in

Edge Detection by Adaptive Splitting II. The Three-Dimensional Case

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Llanas and Lantarón, J. Sci. Comput. 46, 485–518 (2011) we proposed an algorithm (EDAS-d) to approximate the jump discontinuity set of functions defined on subsets of ℝd. This procedure is based on adaptive splitting of the domain of the function guided by the value of an average integral. The above study was limited to the 1D and 2D versions of the algorithm. In this paper we address the three-dimensional problem. We prove an integral inequality (in the case d=3) which constitutes the basis of EDAS-3. We have performed detailed computational experiments demonstrating effective edge detection in 3D function models with different interface topologies. EDAS-1 and EDAS-2 appealing properties are extensible to the 3D case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archibald, R., Chen, K., Gelb, A., Renaut, R.: Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method. NeuroImage 20, 489–502 (2003)

    Article  Google Scholar 

  2. Archibald, R., Gelb, A., Gottlieb, S., Ryan, J.: One-sided post-processing for the discontinuous Galerkin method using ENO type stencil choosing and the local edge detection method. J. Sci. Comput. 28, 167–190 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Archibald, R., Gelb, A., Saxena, R., Xiu, D.: Discontinuity detection in multivariate space for stochastic simulations. J. Comput. Phys. 228, 2676–2689 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43, 259–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Archibald, R., Hu, J., Gelb, A., Farin, G.: Improving the accuracy of volumetric segmentation using pre-processing boundary detection and image reconstruction. IEEE Trans. Image Process. 13, 459–466 (2004)

    Article  Google Scholar 

  6. Bänsch, E., Mikula, K.: Adaptivity in 3D image processing. Comput. Vis. Sci. 4, 21–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barreira, N., Penedo, M.G., Cohen, L., Ortega, M.: Topological active volumes: A topology-adaptive deformable model for volume segmentation. Pattern Recognit. 43, 255–266 (2010)

    Article  MATH  Google Scholar 

  8. Bauer, Ch., Pock, T., Sorantin, E., Bischof, H., Beichel, R.: Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts. Med. Image Anal. 14, 172–184 (2010)

    Article  Google Scholar 

  9. Bliss, A., Su, F.E.: Lower bounds for simplicial covers and triangulations of cubes. Discrete Comput. Geom. 33, 669–686 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bosnjak, A., Montilla, G., Villegas, R., Jara, I.: 3D segmentation with an application of level set-method using MRI volumes for image guided surgery. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, 23–26 August, Lyon, France, pp. 5263–5266 (2007)

    Google Scholar 

  11. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di, Y., Li, R.: Computation of dendritic growth with level set model using a multi-mesh adaptive finite element method. J. Sci. Comput. 39, 441–453 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gamelin, Th.W., Greene, R.E.: Introduction to Topology. Dover, New York (1999)

    MATH  Google Scholar 

  14. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gottlieb, D., Shu, Ch.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grevera, G.J., Udupa, J.K., Miki, Y.: A task-specific evaluation of three-dimensional image interpolation techniques. IEEE Trans. Med. Imaging 18, 137–143 (1999)

    Article  Google Scholar 

  17. Grundmann, A., Möller, H.M.: Invariant integration formulas for the n-simplex by combinatorial methods. SIAM J. Numer. Anal. 15, 282–290 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Horowitz, S.L., Pavlidis, T.: Picture segmentation by a tree traversal algorithm. J. ACM 23, 368–388 (1975)

    Article  Google Scholar 

  19. http://en.wikipedia.org/wiki/File:Computed_tomography_of_human_brain_-_large.png#filehistory

  20. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  21. Kitasaka, T., Mori, K., Hasegawa, J., Toriwaki, J., Katada, K.: Recognition of aorta and pulmonary artery in the mediastinum using medial-line models from 3D CT images without contrast material. Med. Imaging Technol. 20, 572–583 (2002)

    Google Scholar 

  22. Liu, H.K.: Two- and three-dimensional boundary detection. Comput. Graph. Image Process. 6, 123–134 (1977)

    Article  Google Scholar 

  23. Lizier, M.A.S., Martins, D.C. Jr., Cuadros-Vargas, A.J., Cesar, R.M. Jr., Nonato, L.G.: Generated segmented meshes from textured color images. J. Vis. Commun. Image Represent. 20, 190–203 (2009)

    Article  Google Scholar 

  24. Llanas, B., Lantarón, S.: Edge detection by adaptive splitting. J. Sci. Comput. 46, 485–518 (2011)

    Article  MathSciNet  Google Scholar 

  25. Llanas, B., Sáinz, F.J.: Fast training of neural trees by adaptive splitting based on cubature. Neurocomputing 71, 3387–3408 (2008)

    Article  Google Scholar 

  26. McInerney, T., Terzopoulos, D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4, 73–91 (2000)

    Article  Google Scholar 

  27. Meinhardt, E., Zacur, E., Frangi, A.F., Caselles, V.: 3D edge detection by selection of level surface patches. J. Math. Imaging Vis. 34, 1–16 (2009)

    Article  MathSciNet  Google Scholar 

  28. Orden, D., Santos, F.: Asymptotically efficient triangulations of the d-cube. Discrete Comput. Geom. 30, 509–528 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. In: Proceedings of the IEEE Workshop on Computer Vision (Miami), pp. 16–22 (1987)

    Google Scholar 

  30. Rumpf, M., Voigt, A., Berkels, B., Rätz, A.: Extracting grain boundaries and macroscopic deformations from images on atomic scale. J. Sci. Comput. 35, 1–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  32. Shen, T., Li, H., Qian, Z., Huang, X.: Active volume models for 3D medical image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, pp. 707–714 (2009)

    Chapter  Google Scholar 

  33. Shilling, R.Z., Robbie, T.Q., Bailloeul, T., Mewes, K., Mersereau, R.M., Brummer, M.E.: A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans. Med. Imaging 28, 633–644 (2009)

    Article  Google Scholar 

  34. Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J. Glob. Optim. 43, 445–458 (2009)

    Article  MATH  Google Scholar 

  35. Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds.): Handbook of Biomedical Image Analysis Volume III: Registration Models. Kluwer Academic/Plenum Publishers, New York (2005)

    Google Scholar 

  36. Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36, 91–123 (1988)

    Article  MATH  Google Scholar 

  37. Toriwaki, J., Yoshida, H.: Fundamentals of Three-Dimensional Digital Image Processing. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  38. Vukadinovic, D., van Walsum, Th., Manniesing, R., Rozie, S., Hameeteman, R., de Weert, T.T., van der Lugt, A., Niessen, W.J.: Segmentation of the outer vessel wall of the common carotid artery in CTA. IEEE Trans. Med. Imaging 29, 65–76 (2010)

    Article  Google Scholar 

  39. Wang, D., Doddrell, D.M., Cowin, G.: A novel phantom and method for comprehensive 3-dimensional measurement and correction of geometric distortion in magnetic resonance imaging. J. Magn. Reson. Imaging 22, 529–542 (2004)

    Article  Google Scholar 

  40. Wang, G., Wu, Q.M.J.: Guide to Three Dimensional Structure and Motion Factorization. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  41. Wu, X.: Adaptive split-and-merge segmentation based on piecewise least-square approximation. IEEE Trans. Pattern Anal. Mach. Intell. 15, 808–815 (1993)

    Article  Google Scholar 

  42. Yokoyama, K., Kitasaka, T., Mori, K., Mekada, Y., Hasegawa, J., Toriwaki, J.: Liver region extraction from 3D abdominal X-ray CT images using distribution features of abdominal organs. J. Comput. Aided Diag. Medical Images 7, 1–11 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Llanas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llanas, B., Lantarón, S. Edge Detection by Adaptive Splitting II. The Three-Dimensional Case. J Sci Comput 51, 474–503 (2012). https://doi.org/10.1007/s10915-011-9517-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9517-z

Keywords

Navigation