Skip to main content
Log in

Galerkin Methods for Stochastic Hyperbolic Problems Using Bi-Orthogonal Polynomials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work is concerned with scalar transport equations with random transport velocity. We first give some sufficient conditions that can guarantee the solution to be in appropriate random spaces. Then a Galerkin method using bi-orthogonal polynomials is proposed, which decouples the equation in the random spaces, yielding a sequence of uncoupled equations. Under the assumption that the random wave field has a structure of the truncated KL expansion, a principle on how to choose the orders of the approximated polynomial spaces is given based on the sensitivity analysis in the random spaces. By doing this, the total degree of freedom can be reduced significantly. Numerical experiments are carried out to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Jobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    MATH  Google Scholar 

  4. Foo, J., Karniadakis, G.E.: Multi-element probabilistic collocation method in high dimensions. J. Comput. Phys. 229, 1536–1557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fox, B.: Strategies for Quasi-Monte Carlo. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  6. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghanem, R.G., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3, 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Golub, G., van Loan, C.: Matrix Computation, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    Google Scholar 

  10. Jin, C., Cai, X.: A preconditioned recycling GMRES solver for stochastic Helmholtz problems. Commun. Comput. Phys. 6, 342–353 (2009)

    Article  MathSciNet  Google Scholar 

  11. Liu, W., Belytschko, T., Mani, A.: Probabilistic finite elements for nonlinear structural dynamics. Comput. Methods Appl. Mech. Eng. 56, 61–81 (1986)

    Article  MATH  Google Scholar 

  12. Liu, W., Belytschko, T., Mani, A.: Random field finite elements. Int. J. Numer. Methods Eng. 23, 1831–1845 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun. Comput. Phys. 8, 226–248 (2010)

    MathSciNet  Google Scholar 

  14. Wan, X., Karniadakis, G.E.: Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Werder, T., Gerdes, K., Schötzau, D., Schwab, C.: hp-discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190, 6685–6708 (2001)

    Article  MATH  Google Scholar 

  16. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  17. Xiu, D.: Fast numerical methods for stochastic computations: A review. Commun. Comput. Phys. 5, 242–272 (2009)

    MathSciNet  Google Scholar 

  18. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644

  20. Xiu, D., Shen, J.: Efficient stochastic Galerkin methods for random diffusion equations. J. Comput. Phys. 228, 266–281 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Tang, T. Galerkin Methods for Stochastic Hyperbolic Problems Using Bi-Orthogonal Polynomials. J Sci Comput 51, 274–292 (2012). https://doi.org/10.1007/s10915-011-9508-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9508-0

Keywords

Navigation