Skip to main content
Log in

The Discrete Stochastic Galerkin Method for Hyperbolic Equations with Non-smooth and Random Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a general polynomial chaos (gPC) based stochastic Galerkin (SG) for hyperbolic equations with random and singular coefficients. Due to the singular nature of the solution, the standard gPC-SG methods may suffer from a poor or even non convergence. Taking advantage of the fact that the discrete solution, by the central type finite difference or finite volume approximations in space and time for example, is smoother, we first discretize the equation by a smooth finite difference or finite volume scheme, and then use the gPC-SG approximation to the discrete system. The jump condition at the interface is treated using the immersed upwind methods introduced in Jin (Proc Symp Appl Math 67(1):93–104, 2009) and Jin and Wen (Commun Math Sci 3:285–315, 2005). This yields a method that converges with the spectral accuracy for finite mesh size and time step. We use a linear hyperbolic equation with discontinuous and random coefficient, and the Liouville equation with discontinuous and random potential, to illustrate our idea, with both one and second order spatial discretizations. Spectral convergence is established for the first equation, and numerical examples for both equations show the desired accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bijl, H., Lucor, D., Mishra, S., Schwab, C.: Uncertainty Quantification in Computational Fluid Dynamics. Springer, Cham (2013). doi:10.1007/978-3-319-00885-1

    Book  MATH  Google Scholar 

  2. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982). doi:10.1090/S0025-5718-1982-0637287-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, H., Liu, J.G.: The reconstruction of upwind fluxes for conservation laws: its behavior in dynamic and steady state calculations. J. Comput. Phys. 144, 237–256 (1998). doi:10.1006/jcph.1998.5970

    Article  MathSciNet  MATH  Google Scholar 

  4. Despres, B., Poette, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantication in Computational Fluid Dynamics, Volume 92 of Lecture Notes Computer Science Engineering, pp. 105–149. Springer, Heidelberg (2013)

  5. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  6. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3, 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Gunzburger, Max D., Webster, Clayton G., Zhang, Guannan: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    Article  MathSciNet  Google Scholar 

  8. Jin, S.: Numerical methods for hyperbolic systems with singular coefficients: well-balanced scheme, Hamiltonian preservation and beyond. In: Proceedings of the 12th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Univeristy of Maryland, College Park. Proceedings of Symposia in Applied Mathematics, vol 67-1, pp. 93–104, American Mathematical Society (2009)

  9. Hu, J., Jin, S., Xiu, D.: A stochastic Galerkin method for Hamilton–Jacobi equations with uncertainty. SIAM J. Sci. Comput. 37, A2246–A2269 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin, S., Novak, K.A.: A semiclassical transport model for thin quantum barriers. Multiscale Model. Simul. 5, 1063–1086 (2006). doi:10.1137/060653214

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, S., Qi, P.: \(\ell ^1\)-error estimates on the immersed interface upwind scheme for linear convection equations with piecewise constant coefficients: a simple proof. Sci. China Math. 56, 2773–2782 (2013). doi:10.1007/s11425-013-4738-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, S., Wen, X.: Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials. Commun. Math. Sci. 3, 285–315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, S., Wen, X.: Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with partial transmissions and reflections. SIAM J. Numer. Anal. 44, 1801–1828 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection diffusion equations. J. Comput. Phys. 160, 241–282 (2000). doi:10.1006/jcph.2000.6459

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Maitre, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification, Scientific Computation, with Applications to Computational Fluid Dynamics. Springer, New York (2010)

    MATH  Google Scholar 

  16. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123, 493–536 (2012). doi:10.1007/s00211-012-0493-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 160, 241–282 (1990)

  19. Pettersson, M.P., Iaccarino, G., Nordström, J.: Polynomial Chaos Methods for Hyperbolic Differential Equations. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  20. Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun. Comput. Phys. 8(1), 226–248 (2010). doi:10.4208/cicp.060109.130110a

    MathSciNet  MATH  Google Scholar 

  21. Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010). doi:10.1016/j.jcp.2010.05.007

    Article  MathSciNet  MATH  Google Scholar 

  22. Xiu, D.: Fast numerical methods for stochastic computations: a review. Comun. Comput. Phys. 5(2–4), 242–272 (2009). doi:10.1016/j.adhoc.2013.06.001

    MathSciNet  MATH  Google Scholar 

  23. Xiu, D.: Numerical Methods for Stochastic Computations. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  24. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, T., Tang, T.: Convergence analysis for spectral approximation to a scalar transport equation with a random wave speed. J. Comput. Math. 30, 643–656 (2012). doi:10.4208/jcm.1206-m4012

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, T., Tang, T.: Galerkin methods for stochastic hyperbolic problems using bi-orthogonal polynomials. J. Sci. Comput. 51, 274–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Jin.

Additional information

This research was supported by NSFC Grant No. 91330203, NSF Grants DMS-1522184 and DMS-1107291: RNMS KI-Net, and by the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Ma, Z. The Discrete Stochastic Galerkin Method for Hyperbolic Equations with Non-smooth and Random Coefficients. J Sci Comput 74, 97–121 (2018). https://doi.org/10.1007/s10915-017-0426-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0426-7

Keywords

Mathematics Subject Classification

Navigation