Skip to main content
Log in

Radial Basis Function Interpolation on Irregular Domain through Conformal Transplantation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, Radial Basis Function (RBF) method for interpolating two dimensional functions with localized features defined on irregular domain is presented. RBF points located inside the domain and on its boundary are chosen such that they are the image of conformally mapped points on concentric circles on a unit disk. On the disk, a fast RBF solver to compute RBF coefficients developed by Karageorghis et al. (Appl. Numer. Math. 57(3):304–319, 2007) is used. Approximation values at desired points in the domain can be computed through the process of conformal transplantation. Some numerical experiments are given in a style of a tutorial and MATLAB code that solves RBF coefficients using up to 100,000 RBF points is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amestoy, P.R., Enseeiht-Irit, Davis, T.A., Duff, I.S.: Algorithm 837: Amd, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30(3), 381–388 (2004)

    Article  MATH  Google Scholar 

  2. Banjai, L.: Eigenfrequencies of fractal drums. J. Comput. Appl. Math. 198(1), 1–18 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beatson, R.K., Cherrie, J.B., Mouat, C.T.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math. 11(2–3), 253–270 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Buhmann, M.D., Dyn, N.: Spectral convergence of multiquadric interpolation. Proc. Edinb. Math. Soc. (2) 36(2), 319–333 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casciola, G., Montefusco, L.B., Morigi, S.: The regularizing properties of anisotropic radial basis functions. Appl. Math. Comput. 190(2), 1050–1062 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, A.H.-D., Golberg, M.A., Kansa, E.J., Zammito, G.: Exponential convergence and h-c multiquadric collocation method for partial differential equations. Numer. Methods Partial Differ. Equ. 19(5), 571–594 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Driscoll, T.A.: Algorithm 843: improvements to the Schwarz-Christoffel toolbox for MATLAB. ACM Trans. Math. Softw. 31(2), 239–251 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. A Driscoll, T., Trefethen, L.N.: Schwarz-Christoffel Mapping. Cambridge Monographs on Applied and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007). With 1 CD-ROM (Windows, Macintosh and UNIX)

    MATH  Google Scholar 

  13. Faul, A.C., Goodsell, G., Powell, M.J.D.: A Krylov subspace algorithm for multiquadric interpolation in many dimensions. IMA J. Numer. Anal. 25(1), 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 1. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  15. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions in 2-D. Uppsala University Technical Report, 2009

  16. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007/2008)

    Article  MathSciNet  Google Scholar 

  17. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Henrici, P.: Applied and Computational Complex Analysis. Wiley Classics Library, vol. 1. John Wiley & Sons Inc., New York (1988). Power series—integration—conformal mapping—location of zeros. Reprint of the 1974 original, A Wiley-Interscience Publication

    MATH  Google Scholar 

  20. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  21. Jung, J.-H., Durante, V.: An iteratively adaptive multiquardic radial basis function method for detection of local jump discontinuities. Appl. Numer. Math. 59, 1449–1466 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jung, J.-H., Gottlieb, S., Kim, S.O.: Two-dimensional edge detection based on the adaptive iterative MQ-RBF method. Appl. Numer. Math. (submitted)

  23. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics II: Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19(8/9), 147–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: A matrix decomposition RBF algorithm: approximation of functions and their derivatives. Appl. Numer. Math. 57(3), 304–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Platte, R.B.: How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal. (submitted)

  27. Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43(2), 750–766 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  28. Roussos, G., Baxter, B.J.C.: Rapid evaluation of radial basis functions. J. Comput. Appl. Math. 180(1), 51–70 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sarra, S.A.: Adaptive radial basis function methods for time dependent partial differential equations. Appl. Numer. Math. 54(1), 79–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schaback, R.: Limit problems for interpolation by analytic radial basis functions. J. Comput. Appl. Math. 212, 127–149 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Trefethen, L.N.: Spectral Methods in MATLAB. Software, Environments, and Tools, vol. 10. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  33. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  34. Yoon, J.: Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J. Math. Anal. 33(4), 946–958 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfa R. H. Heryudono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heryudono, A.R.H., Driscoll, T.A. Radial Basis Function Interpolation on Irregular Domain through Conformal Transplantation. J Sci Comput 44, 286–300 (2010). https://doi.org/10.1007/s10915-010-9380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9380-3

Keywords

Navigation