Skip to main content

Advertisement

Log in

Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present an unconditionally energy stable and solvable finite difference scheme for the Cahn-Hilliard-Hele-Shaw (CHHS) equations, which arise in models for spinodal decomposition of a binary fluid in a Hele-Shaw cell, tumor growth and cell sorting, and two phase flows in porous media. We show that the CHHS system is a specialized conserved gradient-flow with respect to the usual Cahn-Hilliard (CH) energy, and thus techniques for bistable gradient equations are applicable. In particular, the scheme is based on a convex splitting of the discrete CH energy and is semi-implicit. The equations at the implicit time level are nonlinear, but we prove that they represent the gradient of a strictly convex functional and are therefore uniquely solvable, regardless of time step-size. Owing to energy stability, we show that the scheme is stable in the \(L_{s}^{\infty}(0,T;H_{h}^{1})\) norm, and, assuming two spatial dimensions, we show in an appendix that the scheme is also stable in the \(L_{s}^{2}(0,T;H_{h}^{2})\) norm. We demonstrate an efficient, practical nonlinear multigrid method for solving the equations. In particular, we provide evidence that the solver has nearly optimal complexity. We also include a convergence test that suggests that the global error is of first order in time and of second order in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bramble, J.: A second order finite difference analog of the first biharmonic boundary value problem. Numer. Math. 9, 236–249 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. AI, 27–34 (1949)

    Google Scholar 

  4. Cahn, J.: On spinodal decomposition. Acta Metall. 9, 795 (1961)

    Article  Google Scholar 

  5. Cahn, J., Hilliard, J.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28, 258 (1958)

    Article  Google Scholar 

  6. Elliot, C., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  7. Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)

    Google Scholar 

  8. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feng, X., Wise, S.: Analysis of a Fully Discrete Finite Element Approximation of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow (in preparation)

  10. Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87, 675–699 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn-Hilliard equation. J. Comput. Phys. 212, 288–304 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier Stokes fluids in 2d. SIAM J. Sci. Comput. 29, 2241–2257 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003)

    Article  MathSciNet  Google Scholar 

  15. Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492–513 (2002)

    Article  MathSciNet  Google Scholar 

  16. Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14, 514–545 (2002)

    Article  MathSciNet  Google Scholar 

  17. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lowengrub, J., Truskinovsky, L.: Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shinozaki, A., Oono, Y.: Spinodal decomposition in a Hele-Shaw cell. Phys. Rev. A 45, R2161–R2164 (1992)

    Article  Google Scholar 

  20. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, New York (2005)

    Google Scholar 

  21. Vollmayr-Lee, B., Rutenberg, A.: Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E 68, 066,703 (2003)

    Article  Google Scholar 

  22. Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Cont. Dyn. Sys. A 28, 405–423 (2010)

    Article  Google Scholar 

  23. Wang, C., Wise, S.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. (in review)

  24. Wise, S., Lowengrub, J., Cristini, V.: An adaptive algorithm for simulating solid tumor growth using mixture models. Math. Comput. Model. (in review)

  25. Wise, S., Lowengrub, J., Frieboes, H., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth–I model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

    Article  Google Scholar 

  26. Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  Google Scholar 

  27. Zheng, X., Wise, S., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Wise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wise, S.M. Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations. J Sci Comput 44, 38–68 (2010). https://doi.org/10.1007/s10915-010-9363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9363-4

Keywords

Navigation