Skip to main content
Log in

A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we continue the study, which was initiated in (Ben-Artzi et al. in Math. Model. Numer. Anal. 35(2):313–303, 2001; Fishelov et al. in Lecture Notes in Computer Science, vol. 2667, pp. 809–817, 2003; Ben-Artzi et al. in J. Comput. Phys. 205(2):640–664, 2005 and SIAM J. Numer. Anal. 44(5):1997–2024, 2006) of the numerical resolution of the pure streamfunction formulation of the time-dependent two-dimensional Navier-Stokes equation. Here we focus on enhancing our second-order scheme, introduced in the last three afore-mentioned articles, to fourth order accuracy. We construct fourth order approximations for the Laplacian, the biharmonic and the nonlinear convective operators. The scheme is compact (nine-point stencil) for the Laplacian and the biharmonic operators, which are both treated implicitly in the time-stepping scheme. The approximation of the convective term is compact in the no-leak boundary conditions case and is nearly compact (thirteen points stencil) in the case of general boundary conditions. However, we stress that in any case no unphysical boundary condition was applied to our scheme. Numerical results demonstrate that the fourth order accuracy is actually obtained for several test-cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altas, I., Dym, J., Gupta, M.M., P Manohar, R.: Mutigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Wetton, T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auteri, F., Parolini, N., Quartapelle, L.: Numerical investigation on the stability of the singular driven cavity flow. J. Comput. Phys. 183, 1–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Artzi, M., Fishelov, D., Trachtenberg, S.: Vorticity dynamics and numerical resolution of Navier-Stokes equations. Math. Model. Numer. Anal. 35(2), 313–330 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben-Artzi, M., Croisille, J.-P., Fishelov, D., Trachtenberg, S.: A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations. J. Comput. Phys. 205(2), 640–664 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: Convergence of a compact scheme for the pure streamfunction formulation of the unsteady Navier-Stokes system. SIAM J. Numer. Anal. 44(5), 1997–2024 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31(1), 303–333 (2008)

    Article  MathSciNet  Google Scholar 

  10. Ben-Artzi, M., Chorev, I., Croisille, J.-P., Fishelov, D.: A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J. Numer. Anal. (2009)

  11. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)

    Article  MATH  Google Scholar 

  12. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 168, 464–499 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brüger, A., Gustafsson, B., Lötstedt, P., Nilsson, J.: High order accurate solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 203, 49–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity revisited. Comput. Fluids 35, 326–348 (2006)

    Article  MATH  Google Scholar 

  15. Bubnovitch, V.I., Rosas, C., Moraga, N.O.: A stream function implicit difference scheme for 2d incompressible flows of Newtonian fluids. Intl. J. Numer. Methods Eng. 53, 2163–2184 (2002)

    Article  Google Scholar 

  16. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics. Series in Scientific Computation. Springer, Berlin (2007)

    MATH  Google Scholar 

  17. Carey, G.F., Spotz, W.F.: High-order compact scheme for the stream-function vorticity equations. Intl. J. Numer. Methods Eng. 38, 3497–3512 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Carey, G.F., Spotz, W.F.: Extension of high-order compact schemes to time dependent problems. Numer. Methods Partial Differ. Equ. 17(6), 657–672 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order schemes finite difference schemes. J. Comput. Phys. 108, 272–295 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cayco, M.E., Nicolaides, R.A.: Finite element technique for optimal pressure recovery from stream function formulation of viscous flows. Math. Comput. 46, 371–377 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  23. Chorin, A.J.: Vortex sheet approximation of boundary layers. J. Comput. Phys. 27, 428–442 (1978)

    Article  MATH  Google Scholar 

  24. Chorin, A.J.: Vortex models and boundary layer instability. SIAM J. Sci. Stat. Comput. 1(1), 1–21 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dean, E.J., Glowinski, R., Pironneau, O.: Iterative solution of the stream function-vorticity formulation of the Stokes problem, application to the numerical simulation of incompressible viscous flow. Comput. Methods Appl. Mech. Eng. 87, 117–155 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. E, W., Liu, J.-G.: Vorticity boundary condition and related issues for finite difference scheme. J. Comput. Phys. 124, 368–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. E, W., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fishelov, D., Ben-Artzi, M., Croisille, J.-P.: A compact scheme for the streamfunction formulation of Navier-Stokes equation. In: Computational Science and Its Applications—ICCSA 2003, Part I. Lecture Notes in Computer Science, vol. 2667, pp. 809–817. Springer, Berlin (2003)

    Chapter  Google Scholar 

  29. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  30. Goodrich, J.W.: An unsteady time-asymptotic flow in the square driven cavity. Technical report tech. mem. 103141, NASA (1990)

  31. Goodrich, J.W., Soh, W.Y.: Time-dependent viscous incompressible Navier-Stokes equations: the finite difference Galerkin formulation and streamfunction algorithms. J. Comput. Phys. 84(1), 207–241 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Goodrich, J.W., Gustafson, K., Halasi, K.: Hopf bifurcation in the driven cavity. J. Comput. Phys. 90, 219–261 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23, 413–453 (1991)

    Article  MathSciNet  Google Scholar 

  34. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation. J. Comput. Phys. 207(2), 52–68 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Gupta, M.M., Manohar, R.P., Stephenson, J.W.: Single cell high order scheme for the convection-diffusion equation with variable coefficients. Intl. J. Numer. Methods Fluids 4, 641–651 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gustafson, K., Halasi, K.: Cavity flow dynamics at higher Reynolds number and higher aspect ratio. J. Comput. Phys. 70(2), 271–283 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hestaven, Y., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  38. Hou, T.Y., Wetton, B.T.R.: Stable fourth order stream-function methods for incompressible flows with boundaries. J. Comput. Math. 27, 441–458 (2009)

    Article  MathSciNet  Google Scholar 

  39. Kobayashi, M.H., Pereira, J.M.C.: A computational streamfunction method for the two-dimensional incompressible flows. Intl. J. Numer. Methods Eng. 62, 1950–1981 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kosma, Z.: A computing laminar incompressible flows over a backward-facing step using Newton iterations. Mech. Res. Commun. 27, 235–240 (2000)

    Article  MATH  Google Scholar 

  41. Kupferman, R.: A central-difference scheme for a pure streamfunction formulation of incompressible viscous flow. SIAM J. Sci. Comput. 23(1), 1–18 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lele, S.K.: Compact finite-difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  43. Li, M., Tang, T.: A compact fourth-order finite difference scheme for unsteady viscous incompressible flows. J. Sci. Comput. 16(1), 29–45 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lomtev, I., Karniadakis, G.: A discontinuous Galerkin method for the Navier-Stokes equations. Intl. J. Numer. Methods Fluids 29(5), 587–603 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Orszag, S.A., Israeli, M.: Numerical simulation of viscous incompressible flows. Annu. Rev. Fluid Mech. 6, 281–318 (1974) (Van Dyke, M., Vincenti, W.A., Wehausen, J.V. (eds.))

    Article  Google Scholar 

  46. Quartapelle, L.: Numerical Solution of the Incompressible Navier-Stokes Equations. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  47. Quartapelle, L., Valz-Gris, F.: Projection conditions on the vorticity in viscous incompressible flows. Intl. J. Numer. Methods Fluids 1, 129–144 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schreiber, R., Keller, H.B.: Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49, 310–333 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  49. Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  50. Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  51. Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks/Cole (1989)

  52. Temam, R.: Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  53. Tezduyar, T.E., Liou, J., Ganjoo, D.K., Behr, M.: Solution techniques for the vorticity-streamfunction formulation of the two-dimensional unsteady incompressible flows. Intl. J. Numer. Methods Fluids 11, 515–539 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  54. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218(1), 295–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fishelov.

Additional information

The authors were partially supported by a French-Israeli scientific cooperation grant 3-1355.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Artzi, M., Croisille, JP. & Fishelov, D. A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations. J Sci Comput 42, 216–250 (2010). https://doi.org/10.1007/s10915-009-9322-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9322-0

Keywords

Navigation