Skip to main content
Log in

Adaptive Finite Element Approximation for a Constrained Optimal Control Problem via Multi-meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study adaptive finite element approximation schemes for a constrained optimal control problem. We derive the equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimators in finite element analysis. Comput. Methods Appl. Mech. Eng. 142, 1–88 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang, Y.Z., Yang, D.P.: Superconvergence analysis of finite element methods for optimal control problems of the stationary Benard type. J. Comput. Math. 26, 660–676 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  4. Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation. In: Iserles, A. (ed.) Acta Numer, pp. 1–102. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  5. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Heinkenschloss, K., Vicente, L.N.: Analysis of inexact trust-region SQP algorithms. SIAM J. Optim. 12, 283–302 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huang, Y.Q., Li, R., Liu, W.B., Yan, N.N.: Adaptive multi-mesh finite element approximation for constrained optimal control. Submitted to SIAM Optim. Control (first in 2004)

  8. Kelley, C.T., Sachs, E.W.: A trust region method for parabolic boundary control problems. SIAM J. Optim. 9, 1064–1091 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kufner, A., John, O., Fucik, S.: Function Spaces. Nordhoff, Leiden (1977)

    MATH  Google Scholar 

  10. Li, R.: On multi-mesh h-adaptive algorithm. JSC 24, 321–341 (2005)

    Article  MATH  Google Scholar 

  11. Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation of elliptic optimal control. SIAM J. Control. Optim. 41, 1321–1349 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  13. Liu, W.B.: Adaptive multi-meshes in finite element approximation of optimal control. Contemp. Math. 383, 113–132 (2005)

    Google Scholar 

  14. Liu, W.B., Gong, W., Yan, N.N.: A new finite element approximation of a state-constrained optimal control problem. J. Comput. Math. 27, 97–114 (2009)

    MathSciNet  Google Scholar 

  15. Liu, W.B., Yan, N.N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sachs, E., Volkwein, S.: Augmented Lagrange-SQP methods with Lipschitz continuous Lagrange multiplier updates. SIAM J. Numer. Anal. 40, 233–253 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Verfurth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)

    Article  MathSciNet  Google Scholar 

  19. Verfurth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement. Wiley-Teubner, London (1996)

    Google Scholar 

  20. Volkwein, S.: Affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods. SIAM J. Control. Optim. 41, 875–899 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang, D.P., Chang, Y.Z., Liu, W.B.: A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J. Comput. Math. 26, 471–487 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Liu.

Additional information

This work was supported by the National Basic Research Program of P.R. China under the grant 2005CB321703.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, L., Liu, W. & Yang, D. Adaptive Finite Element Approximation for a Constrained Optimal Control Problem via Multi-meshes. J Sci Comput 41, 238 (2009). https://doi.org/10.1007/s10915-009-9296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-009-9296-y

Keywords

Navigation