Skip to main content
Log in

A Cartesian Embedded Boundary Method for the Compressible Navier-Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We here generalize the embedded boundary method that was developed for boundary discretizations of the wave equation in second order formulation in Kreiss et al. (SIAM J. Numer. Anal. 40(5):1940–1967, 2002) and for the Euler equations of compressible fluid flow in Sjögreen and Peterson (Commun. Comput. Phys. 2:1199–1219, 2007), to the compressible Navier-Stokes equations. We describe the method and we implement it on a parallel computer. The implementation is tested for accuracy and correctness. The ability of the embedded boundary technique to resolve boundary layers is investigated by computing skin-friction profiles along the surfaces of the embedded objects. The accuracy is assessed by comparing the computed skin-friction profiles with those obtained by a body fitted discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, S., Ditkowski, A.: Asymptotically stable fourth-order accurate schemes for the diffusion equation on complex shapes. J. Comput. Phys. 133, 279–288 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abarbanel, S., Ditkowski, A.: Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation. Comput. Fluids 28, 481–510 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abarbanel, S., Ditkowski, A., Yefet, A.: Bounded error schemes for the wave equation on complex domains. J. Sci. Comput. 26, 67–81 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, M.J., Helzel, C., LeVeque, R.J.: H-box methods for the approximation of hyperbolic conservation laws on irregular grids. SIAM J. Numer. Anal. 41, 893–918 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calhoun, D., LeVeque, R.J.: A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries. J. Comput. Phys. 157, 143–180 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coirier, W.J., Powell, K.G.: An accuracy assessment of Cartesian-mesh approaches for the Euler equations. J. Comput. Phys. 117, 121–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colella, P., Graves, D.T., Keen, B.J., Modiano, D.: A Cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys. 211, 347–366 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ferm, L., Lötstedt, P.: Accurate and stable grid interfaces for finite volume methods. Appl. Numer. Math. 49, 407–224 (2004)

    Article  Google Scholar 

  9. Forrer, H., Jeltsch, R.: A higher-order boundary treatment for Cartesian-grid methods. J. Comput. Phys. 140, 259–277 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gustafsson, B., Kreiss, H.-O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems. ii. Math. Comput. 26(119), 649–686 (1972)

    Article  MATH  Google Scholar 

  11. Helzel, C.: Accurate methods for hyperbolic problems on embedded boundary grids. In: Asakura, F., Aiso, H., Kawashima, S., Matsumura, A., Nishibata, S., Nishihara, K. (eds.) Hyperbolic Problems, Theory, Numerics and Applications. Yokohama Publishers, Yokohama (2006)

    Google Scholar 

  12. Helzel, C., Berger, M.J., LeVeque, R.J.: A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput. 26, 785–809 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1998)

    Google Scholar 

  14. Kreiss, H.-O., Peterson, N.A.: A second order accurate embedded boundary method for the wave equation with Dirichlet data. SIAM J. Sci. Comput. 27, 1141–1167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kreiss, H.-O., Peterson, N.A., Yström, J.: Difference approximations for the second order wave equation. SIAM J. Numer. Anal. 40(5), 1940–1967 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kreiss, H.-O., Peterson, N.A., Yström, J.: Difference approximations of the Neumann problem for the second order wave equation. SIAM J. Numer. Anal. 42, 1292–1323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Michelson, D.: Convergence theorem for difference approximations of hyperbolic quasi-linear initial-boundary value problems. Math. Comput. 49, 445–459 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid. Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  19. Olsen, O.K.: Embedded boundary method for Navier-Stokes equations. Master’s Thesis, Royal Institute of Technology (2005)

  20. Pember, R.B., Bell, J.B., Colella, P., Crutchfield, W.Y., Welcome, M.L.: An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120, 278–304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Petersson, A.: http://www.andrew.cmu.edu/user/sowen/software/xcog.html

  23. Quirk, J.J.: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput. Fluids 23(1), 125–142 (1994)

    Article  MATH  Google Scholar 

  24. Sjögreen, B., Yee, H.C.: Multiresolution wavelet based adaptive numerical dissipation control for high order methods. J. Sci. Comput. 20(2), 211–255 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sjögreen, B., Peterson, N.A.: A Cartesian embedded boundary method for hyperbolic conservation laws. Commun. Comput. Phys. 2, 1199–1219 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Sjögreen, B., Yee, H.: Variable high order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows. Commun. Comput. Phys. 5, 730–744 (2009)

    MathSciNet  Google Scholar 

  27. Skogqvist, P.: High order adaptive difference methods for combustible flows. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden (2001)

  28. van Albada, G., van Leer, B., Roberts, J.W.W.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108, 76–84 (1982)

    MATH  Google Scholar 

  29. Yee, H., Sjögreen, B.: Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems. J. Comput. Phys. 225(1), 910–934 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sjögreen.

Additional information

This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-402504.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupiainen, M., Sjögreen, B. A Cartesian Embedded Boundary Method for the Compressible Navier-Stokes Equations. J Sci Comput 41, 94–117 (2009). https://doi.org/10.1007/s10915-009-9289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9289-x

Keywords

Navigation