Skip to main content
Log in

High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the development of well-balanced high order Roe methods for two-dimensional nonconservative hyperbolic systems. In particular, we are interested in extending the methods introduced in (Castro et al., Math. Comput. 75:1103–1134, 2006) to the two-dimensional case. We also investigate the well-balance properties and the consistency of the resulting schemes. We focus in applications to one and two layer shallow water systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armi, L., Farmer, D.: Maximal two-layer exchange through a contraction with barotropic net flow. J. Fluid Mech. 164, 27–51 (1986)

    Article  MATH  Google Scholar 

  2. Bermúdez, A., Vázquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23(8), 1049–1071 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Castro, M.J., Ferreiro, A., García, J.A., González-Vida, J., Macías, J., Parés, C., Vázquez-Cendón, M.E.: On the numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layers systems. Math. Comput. Model. 42(3–4), 419–439 (2005)

    Article  MATH  Google Scholar 

  4. Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems. Math. Comput. 75, 1103–1134 (2006)

    Article  MATH  Google Scholar 

  5. Castro, M.J., LeFloch, P.G., Muñoz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: Coefficient-splitting numerical schemes for nonconservative hyperbolic systems and high order extensions (2008, submitted)

  7. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  8. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    MATH  Google Scholar 

  9. Gosse, L.: A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. with Appl. 39, 135–159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gosse, L.: A well-balanced scheme using non-conservative products designed for hyperbolic system of conservation laws with source terms. Math. Model. Meth. Appl. Sci. 11, 339–365 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Mat. Comput. 67, 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Greenberg, J.M., LeRoux, A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenberg, J.M., LeRoux, A.Y., Baraille, R., Noussair, A.: Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34, 1980–2007 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Krüner, D., Rokyta, M., Wierse, M.: A Lax-Wendroff type theorem for upwind finite volume schemes in 2-D. East–West J. Numer. Math. 4(4), 279–292 (1996)

    MathSciNet  Google Scholar 

  17. LeFloch, P.G.: Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint 593, Institute for Math. and Its Appl., Minneapolis (1989)

  18. LeFloch, P.G., Liu, T.-P.: Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5, 261–280 (1993)

    Article  MathSciNet  Google Scholar 

  19. Marquina, A.: Local piecewise hyperbolic reconstruction of numerical fluxes for non linear scalar conservation laws. SIAM J. Sci. Comput. 15(4), 892–915 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Muñoz, M.L., Parés, C.: Godunov’s method for nonconservative hyperbolic systems. ESAIM Math. Model. Numer. Anal. 41(1), 169–185 (2007)

    Article  MATH  Google Scholar 

  21. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Parés, C., Castro, M.J.: On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM Math. Model. Numer. Anal. 38(5), 821–852 (2004)

    Article  MATH  Google Scholar 

  23. Schroll, H.J., Svensson, F.: A bihyperbolic finite volume method for quadrilateral meshes. SIAM J. Sci. Comput. 26(2), 237–260 (2006)

    MathSciNet  Google Scholar 

  24. Serna, S.: A class of extended limiters applied to piecewise hyperbolic methods. SIAM J. Sci. Comput. 28(1), 123–140 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084 (1988)

    Article  MATH  Google Scholar 

  26. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schems. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Toro, E.F., Titarev, V.A.: MUSTA fluxes for systems of conservation laws. J. Comput. Phys. 216(2), 403–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Thacker, W.C.: Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499–508 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Toumi, I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102(2), 360–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Volpert, A.I.: Spaces BV and quasilinear equations. Math. USSR Sbornik 73, 255–302 (1967)

    MathSciNet  Google Scholar 

  31. Walz, G.: Romberg type cubature over arbitrary triangles. Mannheimer Mathem. Manuskripte Nr. 225, Mannhein (1997)

  32. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, M.J., Fernández-Nieto, E.D., Ferreiro, A.M. et al. High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems. J Sci Comput 39, 67–114 (2009). https://doi.org/10.1007/s10915-008-9250-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9250-4

Keywords

Navigation