Skip to main content
Log in

A Level-Set Method for Computing the Eigenvalues of Elliptic Operators Defined on Compact Hypersurfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We demonstrate, through separation of variables and estimates from the semi-classical analysis of the Schrödinger operator, that the eigenvalues of an elliptic operator defined on a compact hypersurface in ℝn can be found by solving an elliptic eigenvalue problem in a bounded domain Ω⊂ℝn. The latter problem is solved using standard finite element methods on the Cartesian grid. We also discuss the application of these ideas to solving evolution equations on surfaces, including a new proof of a result due to Greer (J. Sci. Comput. 29(3):321–351, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Bertalmoio, M., Cheng, L.T., Sapiro, G., Osher, S.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001)

    Article  MathSciNet  Google Scholar 

  3. Burger, M.: Finite element approximation of elliptic partial differential equations on implicit surfaces. UCLA CAM Report 05-46, August 2005

  4. Cheng, L.T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level-set approach. J. Comput. Phys. 175(2), 604–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135(1), 8–29 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience, New York (1970)

    Google Scholar 

  7. Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  8. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  9. Folland, G.: Fourier Analysis and its Applications. Wadsworth and Brooks, Belmont (1992)

    MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  11. Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29(3), 321–351 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Greer, J.B., Bertozzi, A.L., Sapiro, G.: Fourth order partial differential equations on general geometries. J. Comput. Phys. 216(1), 216–246 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Helffer, B.: Semi-Classical Analysis for the Schrödinger Operator and Applications. Lecture Notes in Mathematics, vol. 1336. Springer, Berlin (1988)

    MATH  Google Scholar 

  14. Morgan, F.: Riemannian Geometry: A Beginner’s Guide. A.K. Peters, Wellesley (1998)

    MATH  Google Scholar 

  15. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    MATH  Google Scholar 

  16. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38, 342–366 (2006)

    Article  Google Scholar 

  18. Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  19. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  20. Xu, J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19(1–3), 573–594 (2003). Special issue in honor of the sixtieth birthday of Stanley Osher

    Article  MATH  MathSciNet  Google Scholar 

  21. Ziemer, W.: Weakly Differentiable Functions. Springer, Berlin (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Brandman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandman, J. A Level-Set Method for Computing the Eigenvalues of Elliptic Operators Defined on Compact Hypersurfaces. J Sci Comput 37, 282–315 (2008). https://doi.org/10.1007/s10915-008-9210-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9210-z

Keywords

Navigation