Skip to main content
Log in

Extension of WAF Type Methods to Non-Homogeneous Shallow Water Equations with Pollutant

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper deals with the extension of the WAF method to discretize Shallow Water Equations with pollutants. We consider two different versions of the WAF method, by approximating the intermediate waves using the flux of HLL or the direct approach of HLLC solver. It is seen that both versions can be written under the same form with different definitions for the approximation of the velocity waves. We also propose an extension of the method to non-homogeneous systems. In the case of homogeneous systems it is seen that we can rewrite the third component of the numerical flux in terms of an intermediate wave speed approximation. We conclude that—in order to have the same relation for non-homogeneous systems—the approximation of the intermediate wave speed must be modified. The proposed extension of the WAF method preserves all stationary solutions, up to second order accuracy, and water at rest in an exact way, even with arbitrary pollutant concentration. Finally, we perform several numerical tests, by comparing it with HLLC solver, reference solutions and analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. (electronic) 25(6), 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bermúdez, A., Vázquez Cendón, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23(8), 1049–1071 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Billet, S.J., Toro, E.F.: On WAF-type schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys. 130, 1–24 (1997)

    Article  MathSciNet  Google Scholar 

  4. Berthon, C., Marche, F.: A positive preserving high order VFROE scheme for shallow water equations. A class of relaxation schemes. SIAM J. Sci. Comput. (2007, submitted)

  5. Castro, M.J., Ferreiro, A.M., García, J.A., González, J.M., Macías, J., Parés, C., Vázquez, M.E.: On the numerical treatment of wet/dry fronts in shallow flows: applications to one-layer and two-layer systems. Math. Comput. Model. 42(3–4), 419–439 (2005)

    Article  MATH  Google Scholar 

  6. Castro, M.J., González-Vida, J.M., Parés, C.: Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math. Models Methods Appl. Sci. 16(6), 897–931 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chacón Rebollo, T., Fernández-Nieto, E.D., Gómez Mármol, M.: A flux-splitting solver for shallow watter equations with source terms. Int. J. Numer. Methods Fluids 42(1), 23–55 (2003)

    Article  MATH  Google Scholar 

  8. Chacón Rebollo, T., Domínguez Delgado, A., Fernández-Nieto, E.D.: Asymptotical balanced schemes for non-homogeneous hyperbolic systems. Applications to shallow water equations. C.R. Acad. Sci. Paris 338, 85–90 (2004)

    MATH  Google Scholar 

  9. Fernández-Nieto, E.D., Bresch, D., Monnier, J.: A consistent intermediate wave speed for a well-balanced HLLC solver. C.R. Acad. Sci. Paris (2007, submitted)

  10. Fernández Nieto, E.D.: Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de aguas someras. Ph.D. Thesis Universidad de Sevilla (2003)

  11. Gallardo, J.M., Parés, C., Castro, M.J.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gallouët, T., Hérard, J.M., Seguin, N.: Some approximate Godunov schemes to compute shallow water equations with topography. Comput. Fluids 32(4), 479–513 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gosse, L.: A well-balanced scheme using non-conservative products designed for hyperbolic system of conservation laws with source terms. Math. Models Methods Appl. Sci. 11, 339–365 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1–16 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    MATH  MathSciNet  Google Scholar 

  16. LeFloch, P.G.: Shock waves for nonlinear hyperbolic systems in nonconservative form. Institute for Math. and Its Appl., Minneapolis, Preprint 593 (1989)

  17. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  Google Scholar 

  18. Marche, F., Bonneton, P., Fabrie, P., Seguin, N.: Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes. Int. J. Numer. Methods Fluids 53(5), 867–894 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Parés, C., Castro, M.J.: On the well-balanced property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38(5), 821–852 (2004)

    Article  MATH  Google Scholar 

  20. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Roe, P.L.: Upwind differencing schemes for hyperbolic conservation laws with source terms. In: Carraso, C., Raviart, P.-A., Serre, D. (eds.) Nonlinear Hyperbolic Problems. Lecture Notes in Mathematics, vol. 1270, pp. 41–51. Springer, Berlin (1986)

    Chapter  Google Scholar 

  22. Schwartzkopff, T., Munz, C.D., Toro, E.F.: ADER: high-order approach for linear hyperbolic systems in 2D. J. Sci. Comput. 17(1–4), 231–240 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Titarev, V.A., Toro, E.F.: WENO schemes based on upwind and centered TVD fluxes. Comput. Fluids 34, 705–720 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Titarev, V.A., Toro, E.F.: Analysis of ADER and ADER-WAF schemes. IMA J. Numer. Anal. 27(3), 616–630 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204, 715–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Toro, E.F.: A weighted average flux method for hyperbolic conservation laws. Proc. R. Soc. Lond. A 423, 401–418 (1989)

    Article  MATH  Google Scholar 

  27. Toro, E.F.: Riemann problems and the WAF method for solving two-dimensional shallow water equations. Philos. Trans. R. Soc. Lond. A 338, 43–68 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Toro, E.F.: The weighted average flux method applied to the time dependent Euler equations. Philos. Trans. R. Soc. Lond. A 341, 499–530 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, New York (2001)

    MATH  Google Scholar 

  30. Toro, E.F., Millington, R.C., Nejad, L.A.M.: Primitive upwind numerical methods for hyperbolic partial differential equations. In: Bruneau, C.H. (ed.) Sixteenth International Conference on Numerical Methods for Fluids Dynamics. Lecture Notes in Physics, pp. 421–426. Springer, Berlin (1998)

    Chapter  Google Scholar 

  31. Toro, E.F., Titarev, V.A.: Solution of the generalised Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. A 458, 271–281 (2002)

    MATH  MathSciNet  Google Scholar 

  32. Toro, E.F., Titarev, V.A.: TVD fluxes for the high-order ADER schemes. J. Sci. Comput. 24(3), 285–309 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Toro, E.F., Titarev, V.A.: ADER schemes for scalar hyperbolic conservation laws with source terms in three space dimensions. J. Comput. Phys. 202, 196–215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vignoli, G., Titarev, V.A., Toro, E.F.: ADER schemes for the shallow water equations in channel with irregular bottom elevation. J. Comput. Phys. 227, 2463–2480 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source term. J. Comput. Phys. 214, 567–598 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: The surface gradient method for the treatment of source terms in the sallow-water equations. J. Comput. Phys. 168, 1–25 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Fernández-Nieto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Nieto, E.D., Narbona-Reina, G. Extension of WAF Type Methods to Non-Homogeneous Shallow Water Equations with Pollutant. J Sci Comput 36, 193–217 (2008). https://doi.org/10.1007/s10915-008-9185-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9185-9

Keywords

Navigation