Skip to main content
Log in

A modified Rusanov scheme for shallow water equations with topography and two phase flows

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bermudez, M.E. Vazquez, Comput. Fluids 23, 1049 (1994)

    Article  MathSciNet  Google Scholar 

  2. P.L. Roe, J. Comput. Phys. 43, 357 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.E. Vazquez, J. Comput. Phys. 146, 497 (1999)

    Article  ADS  Google Scholar 

  4. J.G. Zhou, D.M. Causon, C.G. Mingham, D.M. Ingram, J. Comput. Phys. 20, 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. J. LeVeque Randall, J. Comput. Phys. 146, 346 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. Huang, N. Zhang, Y. Pei, Eng. Appl. Comput. Fluid Mech. 7, 40 (2013)

    Google Scholar 

  7. M.F. Ahmad, M. Mamat, W.B. Wan Nik, A. Kartono, Appl. Math. Comput. Intell. 2, 95 (2013)

    Google Scholar 

  8. F. Zhou, G. Chen, Int. J. Numer. Methods Fluids 73, 266 (2013)

    Article  ADS  Google Scholar 

  9. M. Maleewong, Math. Probl. Eng. 2011, 178491 (2011)

    Article  MathSciNet  Google Scholar 

  10. D. Aasiorowski, Task Q. 8, 251 (2012)

    Google Scholar 

  11. Szu-Hsien Peng, J. Appl. Math. 2012, 489269 (2012)

    Google Scholar 

  12. S. Tollak Munkejord, Adv. Appl. Math. Mech. 2, 131 (2010)

    MathSciNet  Google Scholar 

  13. R.T. Lahey, The prediction phase of phase distribution and separation phenomena using two-fluid models, in Boiling Heat Transfer (Elsevier Science, 1992) pp. 85--121

  14. S. Tollak Munkejord, Comput. Fluids 36, 1061 (2007)

    Article  Google Scholar 

  15. M.R. Ansari, Nucl. Sci. Technol. 41, 709 (2004)

    Article  Google Scholar 

  16. E. Romenski, D. Drikakis, E. Toro, J. Sci. Comput. 42, 68 (2010)

    Article  MathSciNet  Google Scholar 

  17. M. Thanh, A. Izani MDI smail, Phys. Scr. 79, 065401 (2009)

    Article  ADS  Google Scholar 

  18. F. Benkhaldoun, Analysis and validation of a new finite volume scheme for nonhomogeneous systems, in Finite Volumes for Complex Applications IV: Problems and Perspectives, edited by R. Herbin, D. Kroner (2002) pp. 391--402

  19. F. Benkhaldoun, K. Mohamed, L. Quivy, A finite volume two steps flux scheme for 1D and 2D non homogeneous systems, in FVCA4 (Hermes Science Publishing, 2005) pp. 423--433

  20. K. Mohamed, M. Seaid, M. Zahri, J. Comput. Appl. Math. 237, 614 (2013)

    Article  MathSciNet  Google Scholar 

  21. K. Mohamed, Simulation numérique en volume finis, de problémes d’écoulements multidimensionnels raides, par un schéma de flux á deux pas, Dissertation, University of Paris 13 (2005)

  22. F. Benkhaldoun, K. Mohamed, M. Seaid, A generalized Rusanov method for Saint-Venant equations with variable horizontal density, FVCA, in International Symposium, Prague, June 6-10 (2011) pp. 96--112

  23. K. Mohamed, H. Shaban, Int. J. Appl. Math. Stat. 31, 96 (2013)

    Google Scholar 

  24. K. Mohamed, J. Comput. Fluids 104, 9 (2014)

    Article  MathSciNet  Google Scholar 

  25. J. LeVeque Randall, Numerical Methods for Conservation Laws, in Lectures in Mathematics (ETH Zürich, 1992)

  26. P.K. Sweby, SIAM J. Numer. Anal. 21, 995 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Bermudez, A. Dervieux, J.-A. Desideri, M.E. Vazquez, Comput. Methods Appl. Mech. Eng. 155, 49 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. V.V. Rusanov, J. Comput. Math. Phys. USSR 1, 267 (1961)

    MathSciNet  Google Scholar 

  29. F. Alcrudo, F. Benkhaldoun, Comput. Fluids 30, 643 (2001)

    Article  MathSciNet  Google Scholar 

  30. F. Benkhaldoun, I. Elmahi, M. Seaid, J. Comput. Phys. 226, 180 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. V.H. Ransom, Numerical benchmark tests, in Multiphase Science and Technology, edited by G.F. Hewitt, J.M. Delhay, N. Zuber (Hemisphere, Washington, 1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, K., Benkhaldoun, F. A modified Rusanov scheme for shallow water equations with topography and two phase flows. Eur. Phys. J. Plus 131, 207 (2016). https://doi.org/10.1140/epjp/i2016-16207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16207-3

Navigation