Skip to main content
Log in

Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

We study how to approximate the metric terms that arise in the discontinuous spectral element (DSEM) approximation of hyperbolic systems of conservation laws when the element boundaries are curved. We first show that the metric terms can be written in three forms: the usual cross product and two curl forms. The first curl form is identical to the “conservative” form presented by Thomas and Lombard [(1979), AIAA J. 17(10), 1030–1037]. The second is a coordinate invariant form. We prove that in two space dimensions, the typical approximation of the cross product form does satisfy a discrete set of metric identities if the boundaries are isoparametric and the quadrature is sufficiently precise. We show that in three dimensions, this cross product form does not satisfy the metric identities, except in exceptional circumstances. Finally, we present approximations of the curl forms of the metric terms that satisfy the discrete metric identities. Two examples are presented to illustrate how the evaluation of the metric terms affects the satisfaction of the discrete metric identities, one in two space dimensions and the other in three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black K. (1999). A conservative spectral element method for the approximation of compressible fluid flow. KYBERNETIKA 35(1):133–146

    MathSciNet  Google Scholar 

  2. Black, K. (2000). Spectral element approximation of convection-diffusion type problems. Appl. Numer. Math. 33(1–4): 373–379

    Article  MATH  MathSciNet  Google Scholar 

  3. Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A. (1987). Spectral Methods in Fluid Dynamics. Springer-Verlag, New York

    Google Scholar 

  4. Costa B., and Don W.S. (2000). On the computation of high order pseudospectral derivatives. Appl. Numer. Math. 33: 151–159

    Article  MATH  MathSciNet  Google Scholar 

  5. Fagherazzi S., Furbish D.J., Rasetarinera P., and Hussaini M.Y. (2004). Application of the discontinuous spectral Galerkin method to groundwater flow. Adv. Water Res. 27:129–140

    Article  Google Scholar 

  6. Fagherazzi S., Rasetarinera P., Hussaini M.Y., and Furbish D.J. (2004). Numerical solution of the dam-break problem with a discontinuous Galerkin method. J. Hydraulic Eng. 130(6):532–539

    Article  Google Scholar 

  7. Giraldo F.X., Hesthaven J.S., and Warburton T. (2002). Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181(2):499–525

    Article  MATH  MathSciNet  Google Scholar 

  8. Gordon W.J., and Hall C.A. (1973). Construction of curvilinear co-ordinate systems and their applications to mesh generation. Int. J. Numer. Meth. Eng. 7:461–477

    Article  MATH  MathSciNet  Google Scholar 

  9. Hirsch, C. (1990). Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows. John Wiley and Sons, West

  10. Kirby R.M., and Karniadakis G.E. (2003). De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191:249–264

    Article  MATH  Google Scholar 

  11. Kopriva, D. A. (1996). A conservative staggered-grid Chebyshev multidomain method for compressible flows. 2. a semi-structured method multidomain method for compressible flows. II. A semi-structured method. J. Comput. Phys. 128(2): 475–488

    Article  MATH  Google Scholar 

  12. Kopriva D.A., and Kolias J.H. (1996). A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1):244–261

    Article  MATH  MathSciNet  Google Scholar 

  13. Kopriva D.A., Woodruff S.L., and Hussaini M.Y. (2000). Discontinuous spectral element approximation of Maxwell’s equations. In: Cockburn B., Karniadakis G., and Shu C.-W. (eds). Proceedings of the International Symposium on Discontinuous Galerkin Methods. Springer-Verlag, New York

    Google Scholar 

  14. Kopriva, D. A., Woodruff, S. L., and Hussaini, M. Y. (2002). Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Meth. Eng. 53.

  15. Rasetarinera P., Kopriva D.A., and Hussaini M.Y. (2001). Discontinuous spectral element solution of acoustic radiation from thin airfoils. AIAA J. 39(11):2070–2075

    Google Scholar 

  16. Stanescu D., Hussaini M.Y., and Farassat F. (2003). Aircraft engine noise scattering by fuselage and wings: a computational approach. J. Sound Vibration 263(2):319–333

    Article  Google Scholar 

  17. Tam C.K.W. (1995). Computational aeroacoustics: issues and methods. AIAA J 33:1785

    Article  Google Scholar 

  18. Thomas P.D., and Lombard C.K. (1979). Geometric conservation law and its application to flow computations on moving grids. AIAA J 17(10):1030–1037

    Article  MATH  MathSciNet  Google Scholar 

  19. Thomas P.D., and Neier K.L. (1990). Navier Stokes simulation of three-dimensional hypersonic equilibrium flows with ablation. J. Spacecr. Rockets 27(2):143–149

    Article  Google Scholar 

  20. Thompson J.F., Warsi Z.U.A., and Mastin C.W. (1982). Boundary-fitted coordinate systems for numerical solution of partial-differential equations-a review. J. Comput. Phys. 47(1):1–108

    Article  MATH  MathSciNet  Google Scholar 

  21. Thompson J.F., Warsi Z.U.A., and Mastin C.W. (1985). Numerical Grid Generation. Elsevier Science Publishing, Amsterdam

    MATH  Google Scholar 

  22. Vinokur M. (1974). Conservation equations of gas-dynamics in curvilinear coordinate systems. J. Comput. Phys. 14: 105–125

    Article  MathSciNet  Google Scholar 

  23. Vinokur M. (1989). An analysis of finite-difference and finite-volume formulations of conservation laws. J. Comput. Phys. 81:1–52

    Article  MATH  MathSciNet  Google Scholar 

  24. Vinokur M., and Yee H.C. (2001). Extension of efficient low dissipation high order schemes for 3-d curvilinear moving grids. In: Caughey D.A., and Hafez M.M. (eds). Frontiers of Computational Fluid Dynamics 2002. World Scientific, Singapore, pp. 129–164

    Google Scholar 

  25. Visbal M.R., and Gaitonde D.V. (1999). High-order accurate methods for complex unsteady subsonic flows. AIAA J 37(10):1231–1239

    Article  Google Scholar 

  26. Visbal M.R., and Gaitonde D.V. (2002). On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181:155–185

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kopriva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopriva, D.A. Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes. J Sci Comput 26, 301–327 (2006). https://doi.org/10.1007/s10915-005-9070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9070-8

Keywords

Navigation