Skip to main content
Log in

Semigroup theory of symmetry

  • Letter to the Editor
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Symmetry is one of the most fundamental concepts of all nature. We discuss the general theory of symmetry based on theory of semigroups. This includes and extends the theory of groups, which is by now broadly used as an algebraic tool for studying many types of symmetries observed by people. However, symmetry groups are only a particular case of more general, symmetry semigroups. The latter are in turn an instance of an even more general groupoids of symmetry, which may further be a topic of special consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Weyl, in Symmetry (Princeton University Press, New Jersey, 1952). There is an extended edition (contains also articles by other authors), ed. by B.A. Rosenfeld (Nauka, Moscow, 1968) (in Russian)

  2. L. Pauling, R. Hayward, The Architecture of Molecules (W. H. Freeman and Company, San Francisco, 1964)

    Google Scholar 

  3. A.V. Shubnikov, N.V. Belov, W.T.E. Holser, Color Symmetry (Pergamon Press, Oxford, 1964)

    Google Scholar 

  4. A.V. Shubnikov, U Istokov Kristallografii (At the Dawn of Crystallography) (Nauka, Moscow, 1971). (in Russian)

    Google Scholar 

  5. A.V. Shubnikov, V.A. Koptsik, Symmetry in Science and Art (Plenum Press, Berlin, 1974). (translated from Russian)

    Book  Google Scholar 

  6. YuA Urmantsev, Simmetriya Prirody i Priroda Simmetrii (Symmetry of Nature and Nature of Symmetry) (Mysl’, Moscow, 1974). (in Russian)

    Google Scholar 

  7. M. Senechal, G. Fleck, Patterns of Symmetry (University of Massachusetts Press, Amherst, 1977)

    Google Scholar 

  8. J.F. Sadoc, R. Mosseri, Geometrical Frustration (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  9. I. Hargittai, T.C. Laurent, Symmetry 2000, vol. 1 (Portland Press Ltd., London, 2002)

  10. I. Hargittai, T.C. Laurent, Symmetry 2000, vol. 2 (Portland Press Ltd., London, 2002)

  11. L. Michel , E. Brezin (eds.), Symmetry, invariants, topology. Phys. Rep. 341, 1–368 (2001)

  12. K. Mainzer, in Symmetry and Complexity. The Spirit and Beauty of Nonlinear Science, World Scientific Series on Nonlinear Science, Series A, vol. 51, ed. by L.O. Chua (World Scientific, Singapore, 2005)

    Google Scholar 

  13. E.A. Lord, A.L. Mackay, S. Ranganathan, New Geometries for New Materials (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  14. V.V. Iliev, Isomerism as Intrinsic Symmetry of Molecules, Mathematical Chemistry Monographs, No 5 (University of Kragujevac and Faculty of Science, Kragujevac, 2008)

  15. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1954 (1984)

    Article  CAS  Google Scholar 

  16. L.S. Levitov, Local rules for quasicrystals. Commun. Math. Phys. 119, 627–666 (1988)

    Article  Google Scholar 

  17. E.A. Lord, Quasicrystals and Penrose patterns. Curr. Sci. 61(5), 313–319 (1991)

    Google Scholar 

  18. D. Baraches, S. De Bievre, J.-P. Gazeau, Affine symmetry semi-groups for quasi-crystals. Europhys. Lett. 25(6), 435–440 (1994)

    Article  Google Scholar 

  19. P.J. Steinhardt, New perspectives on forbidden symmetries, quasicrystals, and Penrose tilings. Proc. Natl. Acad. Sci. USA 93, 14267–14270 (1996)

    Article  CAS  Google Scholar 

  20. R. Lifshitz, Theory of color symmetry for periodic and quasiperiodic crystals. Rev. Mod. Phys. 69(4), 1181–1216 (1997)

    Article  CAS  Google Scholar 

  21. R. Lifshitz, Lattice color groups of quasicrystals. cond-math 9704105 v2 29 Jan 1998

  22. J.-P. Gazeau, J. Miȩkisz, A symmetry group of a Thue–Morse quasicrystal. arXiv:cond-mat/9904230v1 [cond-mat.stat-mech] (1999)

  23. M.I. Samoïlovich, A.L. Talis, , M.I. Mironov, Quasicrystals with the infinite point group as a symmetry base of diamond-like structures. Dokl. Phys. 47(6), 447–450 (2002). Translated from Doklady Akademii Nauk 384(6), 760–763 (2002)

  24. R.B. King, Regular polytopes, root lattices, and quasicrystals. Croat. Chem. Acta 77(1–2), 133–140 (2004)

    CAS  Google Scholar 

  25. W. Steurer, Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. 219, 391–446 (2004)

    CAS  Google Scholar 

  26. V.A. Artamonov, Quasicrystals and their symmetries. J. Math. Sci. 139(4), 6657–6662 (2006). Translated from Fundamentalnaya i Prikladnaya Matematika, 10(3), 3–10 (2004)

  27. E. Pelantová , Z. Masáková, Quasicrystals: algebraic, combinatorial and geometrical aspects. arXiv:math-ph/0603065v1 (2006)

  28. W. Steurer, Reflections on symmetry and formation of axial quasicrystals. Z. Kristallogr. 221, 402–411 (2006)

    CAS  Google Scholar 

  29. M. Senechal, What is.. a quasicrystal? Not. Am. Math. Soc. 53(8), 886–887 (2006)

    Google Scholar 

  30. V.A. Artamonov, S. Sanchez, On symmetry groups of quasicrystals. Math. Notes 87(3), 303–308 (2010). Original Russian text \(\copyright \) V.A. Artamonov, S. Sanchez, published in Matematicheskie Zametki 87(3), 323–329 (2010)

  31. Y.K. Vekilov, M.A. Chernikov, Quasicrystals. Uspekhi Fiz. Nauk 180(6), 561–586 (2010). (in Russian)

    Article  Google Scholar 

  32. J. Mikhael, M. Schmiedeberg, S. Rausch, J. Roth, H. Stark, C. Bechinger, Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields. PNAS 107(16), 7210–7218 (2010)

    Article  Google Scholar 

  33. M. Baake, U. Grimm, On the notions of symmetry and aperiodicity for Delone sets. Symmetry 4, 566–580 (2012)

    Article  Google Scholar 

  34. V.V. Yudin, E.S. Startzev, The Fibonacci fractal is a new fractal type. Theor. Math. Phys. 173(1), 1387–1402 (2012)

    Article  Google Scholar 

  35. D. Ashkenazi, Z. Lotker, The quasicrystals discovery as a resonance of the non-Euclidean geometry revolution: historical and philosophical perspective. Philosophia 42, 25–40 (2014). doi:10.1007/s11406-013-9504-8

    Article  Google Scholar 

  36. V.R. Rosenfeld, A.A. Dobrynin, J.M. Oliva, J. Rué, Pentagonal chains and annuli as models for designing nanostructures from cages. J. Math. Chem. 54(3), 765–776 (2016)

    Article  CAS  Google Scholar 

  37. B.L. van der Waerden, J.J. Burckhardt, Farbgruppen. Z. Kristallogr. 115, 231–234 (1961)

    Article  Google Scholar 

  38. A.L. Loeb, Color and Symmetry (Wiley, New York, 1971)

    Google Scholar 

  39. M. Senechal, Point groups and color symmetry. Z. Kristallogr. 142, 1–23 (1975)

    Article  CAS  Google Scholar 

  40. C.H. MacGillavry, Fantasy and Symmetry, the Periodic Drawings of MC Escher (Harry N. Abrams, New York, 1976)

    Google Scholar 

  41. S.O. MacDonald, A.P. Street, On crystallographic color groups, in Lecture Notes in Mathematics, vol. 560 (Springer, Berlin, 1976), pp. 149–157

  42. B. Grünbaum, G.C. Shephard, Perfect colorings of the transitive tilings and patterns in the plane. Discrete Math. 20, 235–247 (1977)

    Article  Google Scholar 

  43. S.O. MacDonald, A.P. Street, The analysis of color symmetry, in Lecture Notes in Mathematics, vol. 686 (Springer, Berlin, 1978), pp. 210–222

  44. R.L.E. Schwarzenberger, N-Dimensional Crystallography (Pitman, San Francisco, 1980)

    Google Scholar 

  45. R.L. Roth, Color symmetry and group theory. Discrete Math. 38, 273–296 (1982)

    Article  Google Scholar 

  46. V.R. Rosenfeld, Color symmetry, semigroups, fractals. Croat. Chem. Acta 86(4), 555–559 (2013)

    Article  CAS  Google Scholar 

  47. M. Mucha, Hidden symmetries and Weyl’s recipe, in Symmetry and Structural Properties of Condensed Matter, ed. by W. Florek, T. Lulek, M. Mucha (World Scientific, Singapore, 1991), p. 19

    Google Scholar 

  48. B. Lulek, Impurities in the Heisenberg magnet and the general recipe of Weyl. Semin. Lothar. Combin. 26, 7 (1991)

    Google Scholar 

  49. A. Kerber, Applied Finite Group Actions (Springer, Berlin, 1999)

    Book  Google Scholar 

  50. V.R. Rosenfeld, On mathematical engineering and design of novel molecules for nanotechnological applications—review. Sci. Isr. Technol. Adv. 9(1), 56–65 (2007)

    CAS  Google Scholar 

  51. V.R. Rosenfeld, Toward molecules with nonstandard symmetry, Ch 14, in Diamond and Related Nanostructures, ed. by M.V. Diudea, C.L. Nagy (Springer, Berlin, 2013), pp. 275–285

    Chapter  Google Scholar 

  52. B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Co., New York, 1982)

    Google Scholar 

  53. M.F. Barnsley, H. Rising, Fractals Everywhere (Academic Press, Boston, 1993)

    Google Scholar 

  54. J.F. Gouyet, Physics and Fractal Structures (B. Mandelbrot, Foreword and Springer, Masson and New York, 1996)

    Google Scholar 

  55. K. Falconer, Techniques in Fractal Geometry (Wiley, USA, 1997)

    Google Scholar 

  56. D.J. Klein, W.A. Seitz, J.E. Kilpatrick, Branched polymer models. J. Appl. Phys. 53(10), 6599–6603 (1982)

    Article  CAS  Google Scholar 

  57. D.J. Klein, W.A. Seitz, Self-similar self-avoiding structures: models for polymers. Proc. Natl. Acad. Sci. USA 80, 3125–3128 (1983)

    Article  CAS  Google Scholar 

  58. D.J. Klein, W.A. Seitz, Graphs, polymer models, excluded volume, and chemical reality, in Topology and Graph Theory in Chemistry, ed. by R.B. King (Elsevier, Amsterdam, 1983), pp. 430–445

    Google Scholar 

  59. D.J. Klein, Self-interacting self-avoiding walks on the Sierpinski gasket. J. Phys. Lett. 45(6), L-241–L-247 (1984)

    Article  Google Scholar 

  60. W.A. Seitz, D.J. Klein, G.E. Hite, Interacting dimers on a Sierpiński gasket. Discrete Appl. Math. 19, 339–348 (1988)

    Article  Google Scholar 

  61. D.J. Klein, T.P. Živković, A.T. Balaban, The fractal family of coro Nenes. MATCH Commun. Math. Comput. Chem. 29, 107–130 (1993)

    CAS  Google Scholar 

  62. L. Bytautas, D.J. Klein, M. Randić, T. Pisanski, Foldedness in linear polymers: a difference between graphical and Euclidean distances. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 51, 39–61 (2000)

    Google Scholar 

  63. D.J. Klein, D. J, A.T. Balaban, Clarology for conjugated carbon nano-structures: molecules, polymers, graphene, defected graphene, fractal benzenoids, fullerenes, nano-tubes, nano-cones, nano-tori, etc. Open Org. Chem. J. (Suppl 1-M3) 5, 27–61 (2011)

    Article  CAS  Google Scholar 

  64. Y. Almirantis, A. Provata, An evolutionary model for the origin of non-random long-range order and fractality in the genome. BioEssays 23, 647–656 (2001)

    Article  CAS  Google Scholar 

  65. N.N. Oiwa, J.A. Glazier, The fractal structure of the mitochondrial genomes. Phys. A 311, 221–230 (2002)

    Article  CAS  Google Scholar 

  66. M.A. Moret, J.G. Miranda, E. Noqueira, Jr., M.C. Santana, G.F. Zebende, Self-similarity and protein chains. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 71(1 Pt 1), 012901 (2005) (epub 2005 Jan 27)

  67. C. Cattani, Fractals and hidden symmetries in DNA. Math. Probl. Eng. 2010, 507056 (2010). doi:10.1155/2010/507056

  68. N. Todoroff, J. Kunze, H. Schreuder, K.-H. Baringhaus, G. Schneider, Fractal dimensions of macromolecular structures. Mol. Inf. 33, 588–596 (2014)

    Article  CAS  Google Scholar 

  69. R. Hancock, Structures and functions in the crowded nucleus: new biophysical insights. Front. Phys. 53, 1–7 (2014)

    Google Scholar 

  70. V.R. Rosenfeld, The fractal nature of folds and the Walsh copolymers. J. Math. Chem. 54(2), 559–571 (2016)

    Article  CAS  Google Scholar 

  71. C. Stover, E.W. Weisstein, “Groupoid” from MathWorld—a wolfram web resource. http://mathworld.wolfram.com/Groupoid.html

  72. M. Lothaire, Combinatorics on Words (Addison-Wesley, USA, 1983)

    Google Scholar 

  73. I. Dolinka, J. East, Twisted Braurer monoids. arXiv:1510.08666v1 [math.GR] (2015)

  74. F. Frucht, Graphs of degree three with a given abstract group. Can. J. Math. 1, 365–378 (1949)

    Article  Google Scholar 

  75. G. Sabidussi, Graphs with given group and given graph-theoretical properties. Can. J. Math. 9, 515–525 (1957)

    Article  Google Scholar 

  76. F. Harary, Graph Theory (Addison-Wesley, Reading, 1969)

    Google Scholar 

  77. D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application (VEB Deutscher Verlag der Wissenschaften, Berlin, 1980)

    Google Scholar 

  78. W. Burnside, Theory of Groups of Finite Order (Cambridge, 1911). Project Gutenberg-tm electronic works, EBook #40395, Release date: August 2, 2012. www.gutenberg.org/ebooks/

  79. H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups (Springer, Berlin, 1957)

    Book  Google Scholar 

  80. M. Hall Jr., The Theory of Groups (Macmillan, New York, 1959)

    Google Scholar 

  81. A.G. Kurosh, The Theory of Groups, vol. 1 (Chelsea, New York, 1960). (translated from Russian)

    Google Scholar 

  82. A.G. Kurosh, The Theory of Groups, vol. 2 (Chelsea, New York, 1960). (translated from Russian)

    Google Scholar 

  83. I. Grossman, W. Magnus, Groups and Their Graphs, Random House (The L. W. Singer Company, USA, 1964)

    Google Scholar 

  84. M.I. Kargapolov, Y.I. Merzlyakov, Fundamentals of the Theory of Groups (Springer, Germany, 1979). (translated from Russian)

    Book  Google Scholar 

  85. M. Klin, G. Rücker, G. Tinhofer, Algebraic Combinatorics in Mathematical Chemistry I. Methods and Algorithms. 1. Permutation Groups and Coherent (Cellular) Algebras (Mathematical Institute, The Technical University of München, München, 1995)

    Google Scholar 

  86. J.S. Milne, Group Theory, Version 3.13, Copyright (2013)

  87. G.R. Goodson, Inverse conjugacies and reversing symmetry groups. Am. Math. Mon. 106(1), 19–26 (1999)

    Article  Google Scholar 

  88. M. Baake, J.A.G. Roberts, Symmetries and reversing symmetries of polynomial automorphisms of the plane. ArXiv:math/0501151v1 [math.DS] (2005)

  89. J. East, T.E. Nordahl, On groups generated by involutions of a semigroup. J. Algebra 445, 136–162 (2016)

    Article  Google Scholar 

  90. G. Targoński, On orbit theory and some of its applications. Zeszyty Nauk. Akad. Górn.-Hutniczej im. St. Staszica Nr. 764, Mat.-Fiz.-Chem 43, 7–14 (1980)

    Google Scholar 

  91. V.R. Rosenfeld, Yet another generalization of Pólya’s theorem: enumerating equivalence classes of objects with a prescribed monoid of endomorphisms. MATCH Commun. Math. Comput. Chem. 43, 111–130 (2001)

    CAS  Google Scholar 

  92. G.-C. Rota, D.A. Smith, Enumeration under group action. Ann. Sci. Norm. Super. Pisa. Cl. Sci. 4, 637–646 (1977)

    Google Scholar 

  93. A. Pultr, Z. Herdlin, Relations (graphs) with given infinite semigroup. Monatsch. Math. 68, 421–425 (1964)

    Article  Google Scholar 

  94. Z. Herdlin, A. Pultr, Symmetric relations (undirected graphs) with given semigroup. Monatsch. Math. 69, 318–322 (1965)

    Article  Google Scholar 

  95. J. Sichler, Nonconstant endomorphisms of lattices. Proc. Am. Math. Soc. 34(1), 67–70 (1972)

    Article  Google Scholar 

  96. A. Pultr, V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories (North-Holland Publishing Company, Amsterdam, 1980)

    Google Scholar 

  97. S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5, 2nd edn. (Springer, 1998). ISBN 0-387-98403-8. Zbl 0906.18001

  98. G.B. Preston, Semigroups of graphs, in Semigroups, ed. by T.E. Hall, P.R. Jones, G.B. Preston (Academic Press, USA, 1980)

    Google Scholar 

  99. V.A. Molchanov, Semigroups on mappings of graphs. Semigroup Forum 27(1–4), 155–199 (1983)

    Article  Google Scholar 

  100. S.C. Shee, H.H. Teh, Graphical colour-representation of an inverse semigroup, in Graph Theory, Proceedings of the 1st Southeast Asian Colloquium, Singapore 1983, Lecture Notes in Mathematics, vol. 1073, pp. 222–227 (1984)

  101. V. Koubek, V. Rödl, On the minimum order of graphs with given semigroup. J. Comb. Theory Ser. B 36, 135–155 (1984)

    Article  Google Scholar 

  102. L. Marki, Problems raised at the problem session on the colloquium on semigroups in Szeged, August 1987. Semigroup Forum, 37(3), 367–373 (1988)

  103. M.E. Adams, M. Gould, Posets whose monoids of order-preserving maps are regular. Order 6, 195–201 (1989)

    Article  Google Scholar 

  104. U. Knauer, M. Nieporte, Endomorphisms of graphs I. The monoid of strong endomorphisms. Archiv der Mathematik 52(6), 607–614 (1989)

    Article  Google Scholar 

  105. M. Böttcher, U. Knauer, Endomorphism spectra of graphs. Discrete Math. 109, 45–57 (1992)

    Article  Google Scholar 

  106. T.G. Lavers, The monoid of ordered partitions of a natural number. Semigroup Forum 53, 44–56 (1996)

    Article  Google Scholar 

  107. A. Solomon, Catalan monoids, monoids of local endomorphisms and their presentations. Semigroup Forum 53, 351–368 (1996)

    Article  Google Scholar 

  108. M.E. Adams, S. Bulman-Fleming, M. Gould, Endomorphism properties of algebraic structures, in: Proceedings of the Tennessee Topology Conference (World Scientific, 1997), pp. 1–17

  109. W.M. Li, Inverses of regular strong endomorphisms of graphs. J. Math. Res. Exp. 18(4), 529–534 (1998)

    Google Scholar 

  110. V.R. Rosenfeld, Endomorphisms of a weighted molecular graph and its spectrum. MATCH Commun. Math. Comput. Chem. 40, 203–214 (1999)

    CAS  Google Scholar 

  111. T. Lavers, A. Solomon, The endomorphisms of a finite chain form a Rees congruence semigroup. Semigroup Forum 59, 167–170 (1999)

    Article  Google Scholar 

  112. M.E. Adams, M. Gould, Finite posets whose monoids of order-preserving maps are abundant. Acta Sci. Math. (Szeged) 67, 3–37 (2001)

    Google Scholar 

  113. W. Li, J. Chen, Endomorphism-regularity of split graphs. Eur. J. Comb. 22, 207–216 (2001)

    Article  CAS  Google Scholar 

  114. G. Barnes, I. Levi, Ranks of semigroups generated by order-preserving transformations with a fixed partition type. Commun. Algebra 31(4), 1753–1763 (2003)

    Article  Google Scholar 

  115. W. Li, Graphs with regular monoids. Discrete Math. 265, 105–118 (2003)

    Article  Google Scholar 

  116. E. Sikolya, Semigroups for flows in networks, Doctoral thesis, the Eberhard-Karls University at Tübingen, 2004

  117. P. Hell, Graphs and Homomorphisms (Oxford University Press, Oxford, 2004)

    Book  Google Scholar 

  118. W.F. Klostermeyer, G. MacGillivray, Homomorphisms and oriented colorings of equivalence classes of oriented graphs. Discrete Math. 274(1–3), 161–172 (2004)

    Article  Google Scholar 

  119. W. Li, Various inverses of a strong endomorphism of a graph. Discrete Math. 300, 245–255 (2005)

    Article  Google Scholar 

  120. P. Ille, A proof of a conjecture of Sabidussi on graphs idempotent under the lexicographic product. Electron. Notes Discrete Math. 22, 91–92 (2005)

    Article  Google Scholar 

  121. S. Fan, Generalized symmetry of graphs. Electron. Notes Discrete Math. 23, 51–60 (2005)

    Article  Google Scholar 

  122. P.J. Cameron, Graph homomorphisms, in Combinatorics Study Group Notes (2006), pp. 1–7. www.maths.gmw.ac.uk/~pjc/csgnotes/hom1.pdf

  123. P. Puusemp, Endomorphisms and endomorphism semigroups of groups, in Focus on Group Theory Research, ed. by L.M. Ying (Nova Science Publishers Inc, New York, 2006), pp. 27–57

    Google Scholar 

  124. A. Laradji, A. Umar, Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72, 51–62 (2006)

    Article  Google Scholar 

  125. A. Laradji, A. Umar, Combinatorial results for semigroups of order-preserving partial transformations. J. Algebra 278, 342–359 (2006)

    Article  Google Scholar 

  126. W. Mora, Y. Kemprasit, Regularity of full order-preserving transformation semigroups on some dictionary posets. Thai J. Math. 4, 19–23 (2006). (Annual meeting in mathematics, 2006)

    Google Scholar 

  127. P.M. Higgins, J.D. Mitchell, M. Morayne, N. Ruškuc, Rank properties of endomorphisms of infinite partially ordered sets. Bull. Lond. Math. Soc. 38, 177–191 (2006). doi:10.1112/S0024609305018138

    Article  Google Scholar 

  128. E. Goode, D. Pixton, Recognizing splicing languages: syntactic monoids and simultaneous pumping. Discrete Appl. Math. 155(8), 989–1006 (2007)

    Article  Google Scholar 

  129. L. Kari, K. Mahalingam, G. Thierrin, The syntactic monoid of hairpin-free languages. Acta Inf. 44, 153–166 (2007)

    Article  Google Scholar 

  130. H. Hou, Y. Luo, Graphs whose endomorphism monoids are regular. Discrete Math. 308, 3888–3896 (2008)

    Article  Google Scholar 

  131. H. Hou, Y. Luo, Z. Cheng, The endomorphism monoid of \(\overline{P_{n}}\). Eur. J. Comb. 29, 1173–1185 (2008)

    Article  Google Scholar 

  132. Sr Arworn, An algorithm for the numbers of endomorphisms on paths (DM13208). Discrete Math. 309, 94–103 (2009)

    Article  Google Scholar 

  133. V. Koubek, V. Rödl, B. Shemmer, On graphs with a given endomorphism monoid. J. Graph Theory 62, 241–262 (2009)

    Article  Google Scholar 

  134. J.D. Mitchell, M. Morayne, Y. Péresse, M. Quick, Generating transformation semigroups using endomorphisms of preoders, graphs, and tolerances. Ann. Pure Appl. Logic 161(12), 1471–1485 (2010)

    Article  Google Scholar 

  135. R. Kaschek, On wreathed lexicographic products of graphs. Discrete Math. 310, 1275–1281 (2010)

    Article  Google Scholar 

  136. C. Manon, Presentations of semigroup algebras of weighted trees. J. Algebraic Comb. 31, 467–489 (2010)

    Article  Google Scholar 

  137. Y. Kemprasit, W. Mora, T. Rungratgasame, Isomorphism theorems for semigroups of order-preserving partial transformations. Int. J. Algebra 4(17), 799–808 (2010)

    Google Scholar 

  138. V.H. Fernandes, M.M. Jesus, V. Maltcev, J.D. Mitchell, Endomorphisms of the semigroup of order-preserving mappings. Semigroup Forum 81, 277–285 (2010)

    Article  Google Scholar 

  139. J. Araújo, M. Kinyonc, J. Konieczny, Minimal paths in the commuting graphs of semigroups. Eur. J. Comb. 32, 178–197 (2011)

    Article  Google Scholar 

  140. E.A. Bondar’, V. Yu Zhuchok, Representations of the monoid of strong endomorphisms of \(n\)-uniform hypergraphs. Fund. Appl. Math. 18(1), 21–34 (2013). (in Russian)

    Google Scholar 

  141. D. Roberson, Variations on a Theme: Graph Homomorphisms, Doctoral thesis, the University of Waterloo, 2013

  142. W. Buczynska, J. Buczynski, K. Kubjas, M. Michalek, On the graph labellings arising from phylogenetics. Cent. Eur. J. Math. 11(9), 1577–1592 (2013)

    Google Scholar 

  143. H. Hinton, Theory of Groups of Finite Order (Oxford University Press, Oxford, 1908)

    Google Scholar 

  144. A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, vol. 1 (American Mathematical Society, Providence, 1961)

    Google Scholar 

  145. A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, vol. 2 (American Mathematical Society, Providence, 1967)

    Google Scholar 

  146. P.M. Higgins, Techniques of Semigroup Theory (Oxford University Press, Oxford, 1992)

    Google Scholar 

  147. J.M. Howie, An Introduction to Semigroup Theory (Academic Press, USA, 1976)

    Google Scholar 

  148. J.M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, Oxford, 1995)

    Google Scholar 

  149. G. Lallement, Semigroups and Combinatorial Applications (Wiley, USA, 1979)

    Google Scholar 

  150. E.S. Lyapin, Semigroups (American Mathematical Society, Providence, 1974) Translations of Mathematical Monographs, vol. 3

  151. M. Petrich, Introduction to Semigroups (Merrill, USA, 1973)

    Google Scholar 

  152. M. Petrich, Lectures in Semigroups (Wiley, USA, 1977)

    Google Scholar 

  153. M. Petrich, Inverse Semigroups (Wiley, USA, 1984)

    Google Scholar 

  154. M. Petrich, N.R. Reilly, Completely Regular Semigroups (Canadian Mathematicsal Society Series of Monographs and Advanced Texts) (Wiley, New York, 1999)

    Google Scholar 

  155. F.J. Pastijn, M. Petrich, Regular Semigroups as Extensions, Ser.: Research Notes in Mathematics, Vol. 136, Pitman Publishing Program, Boston, 1985

  156. R.H. Bruck, A Survey of Binary Systems (Springer, New York, 1971)

    Book  Google Scholar 

  157. L.N. Shevrin, Semigroups, in General Algebra, vol. 2, ed. by L.A. Skornyakov (Nauka, Moscow, 1991), pp. 11–191

    Google Scholar 

  158. J.E. Pin, Finite semigroups and recognizable languages, in Semigroups, Formal Languages and Groups, ed. by J. Fountain (Kluwer Academic Publishers, Dodrecht, 1995)

    Google Scholar 

  159. L.N. Shevrin, A.J. Ovsyannikov, Semigroups and Their Subsemigroup Lattices (Kluwer Academic Publishers, USA, 1996)

    Book  Google Scholar 

  160. A.L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras, Ser.: Progress in Mathematics, Vol. 170, Birkhäuser, Boston, USA, 1998

  161. T. Harju, Lecture Notes on Semigroups (University of Turku, Turku, 1996)

    Google Scholar 

  162. S.A. Duplij, Polusupermnogoobraziya i polugruppy = Semisupermanifolds and Semigroups (Krok, Kharkov, 2000 and 2013) (in Russian)

  163. T.S. Blyth, M.H. Almeida Santos, Regular semigroups with skew pairs of idempotents. Semigroup Forum 65, 264–274 (2002)

    Article  Google Scholar 

  164. V.R. Rosenfeld, Combinatorial actions of idealizers of subsemigroups (submitted)

  165. A.C. Brown, On an application of mathematics to chemistry. Proc. R. Soc. Edinb. 6(73), 89–90 (1866–1867)

  166. V. R. Rosenfeld and Victor R. Rosenfeld, “Groupoids and classification of polymerization reactions”, in: The Use of Computers in Spectroscopy and Chemical Research, Novosibirsk, 6–8th September 1983, Theses of the All-Union Conference, Novosibirsk, USSR, 1983, pp. 195–196 (in Russian)

  167. V.R. Rosenfeld, Using semigroups in modeling of genomic sequences. MATCH Commun. Math. Comput. Chem. 56(2), 281–290 (2006)

    CAS  Google Scholar 

  168. J.-A. de Séguier, Élements de la Théorie des Groupes Abstraits (Elements of the Theory of Abstract Groups) (Gauthier-Villars, Paris, 1904)

    Google Scholar 

  169. K. Fichtner, On groupoids in crystallography. MATCH Commun. Math. Comput. Chem. 9, 21–40 (1980)

    CAS  Google Scholar 

  170. A. Weinstein, Groupoids: unifying internal and external symmetry. Not. Am. Math. Soc. 43(7), 744–752 (1996)

    Google Scholar 

  171. R.T. Živaljević, Combinatorial groupoids, cubical complexes, and the Lovász conjecture. arXiv:math/0510204v2 [math.CO] (2005)

  172. R.T. Živaljević, Groupoids in combinatorics—applications of a theory of local symmetries. arXiv:math/0605508v1 [math.CO] (2006)

  173. I. Sciriha, S. Fiorini, On the characteristic polynomial of homeomorphic images of a graph. Discrete Math. 174, 293–308 (1997)

    Article  Google Scholar 

  174. M.V. Diudea, I. Gutman, L. Jantschi, Molecular Topology (Nova Science Publishers, New York, 2001)

    Google Scholar 

  175. V.R. Rosenfeld, Equivalent genomic (proteomic) sequences and semigroups. J. Math. Chem. 53(6), 1488–1494 (2015). doi:10.1007/s10910-015-0501-y

    Article  CAS  Google Scholar 

  176. V.D. Belousov, Foundations of the Theory of Quasigroups and Loops (USSR, Moscow, 1967). (in Russian)

    Google Scholar 

  177. V.D. Belousov, Elements of Quasigroup Theory: A Special Course (Kishinev State University Printing House, Kishinev, 1981). (in Russian)

    Google Scholar 

  178. H.O. Pflugfelder, Quasigroups and Loops: Introduction (Heldermann, Berlin, 1990)

    Google Scholar 

  179. H.O. Pflugfelder, Historical notes on loop theory. Comment. Math. Univ. Carol. 41(2), 359–370 (2000)

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Department of Mathematics, UCD, for providing an office so that Dr. Nordahl may more directly participate in mathematical activity now that he is Professor Emeritus of the Department of Psychiatry and Behavioral Sciences. We are also grateful to our anonymous Referees for all their suggestions. The support of the Ministry of Absorption of the State Israel (through fellowship “Shapiro”) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Rosenfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenfeld, V.R., Nordahl, T.E. Semigroup theory of symmetry. J Math Chem 54, 1758–1776 (2016). https://doi.org/10.1007/s10910-016-0653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0653-4

Keywords

Navigation