Skip to main content
Log in

The Fibonacci fractal is a new fractal type

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a uniform method for estimating fractal characteristics of systems satisfying some type of scaling principle. This method is based on representing such systems as generating Bethe-Cayley tree graphs. These graphs appear from the formalism of the group bundle of Fibonacci-Penrose inverse semigroups. We consistently consider the standard schemes of Cantor and Koch in the new method. We prove the fractal property of the proper Fibonacci system, which has neither a negative nor a positive redundancy type. We illustrate the Fibonacci fractal by an original procedure and in the coordinate representation. The golden ratio and specific inversion property intrinsic to the Fibonacci system underlie the Fibonacci fractal. This property is reflected in the structure of the Fibonacci generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Penrose, The Emperor’s New Mind, Oxford Univ. Press, Oxford (1990).

    Google Scholar 

  2. P. J. Steinhardt, Nature, 452, 43–44 (2008).

    Article  ADS  Google Scholar 

  3. A. S. Keys and S. C. Glotzer, Phys. Rev. Lett., 99, 235503 (2007); arXiv:0705.0106v3 [cond-mat.other] (2007).

    Article  ADS  Google Scholar 

  4. E. Abe, Y. F. Yan, and S. J. Pennycook, Nature Mater., 3, 759–767 (2004).

    Article  ADS  Google Scholar 

  5. G. Y. Onoda, P. J. Steinhardt, D. P. DiVincenzo, and J. E. S. Socolar, Phys. Rev. Lett., 60, 2653–2656 (1988).

    Article  ADS  Google Scholar 

  6. H.-C. Jeong, Phys. Rev. Lett., 98, 135501 (2007); arXiv:0704.0848v1 [cond-mat.dis-nn] (2007).

    Article  ADS  Google Scholar 

  7. D. Gratias, Uspekhi Fiz. Nauk, 156, 347–364 (1988).

    Article  Google Scholar 

  8. A. M. Bratkovskii, Yu. A. Danilov, and G. I. Kuznetsov, Phys. Metals Metallography, 68 (1989).

  9. V. V. Yudin, E. S. Startsev, and I. G. Permyakova, “Penrose semigroup and its fractal properties [in Russian],” in: Proc. 11th All-Russia Seminar “Modeling Nonequilibrium Systems 2008” (Krasnoyarsk, Russia, 26–28 September 2008), Inst. Comp. Math., SB RAS, Krasnoyarsk (2008), pp. 217–219.

    Google Scholar 

  10. V. V. Yudin, E. S. Startsev, and I. G. Permyakova, “Algebraic principles of the generation of neural networks with the Fibonacci-Penrose quasicrystallographic topology [in Russian],” in: Proc. 15th Intl. Conf. on Neurocybernetics (Rostov-on-Don, Russia, 23–25 September 2009), Southern Phys. Univ. Publ., Rostov-on-Don (2009), pp. 222–225.

    Google Scholar 

  11. V. V. Yudin, E. S. Startsev, and I. G. Permyakova, Theor. Math. Phys., 167, 517–537 (2011).

    Article  Google Scholar 

  12. V. V. Yudin, E. S. Startsev, and I. G. Permyakova, “Fibonacci fractal as a new fractal type [in Russian],” in: Proc. 12th All-Russia Seminar “Modeling Nonequilibrium Systems 2009”, Inst. Comp. Math., SB RAS, Krasnoyarsk (2009), pp. 205–207.

    Google Scholar 

  13. A. N. Mikhalyuk, P. L. Titov, and V. V. Yudin, Phys. A, 389, 4127–4139 (2010).

    Article  Google Scholar 

  14. V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, and E. G. Savchuk, Crystallography Reports, 44, 373–381 (1999).

    ADS  Google Scholar 

  15. V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, O. A. Chudnova, and Yu. A. Karygina, Crystallography Reports, 47, 189–195 (2002).

    Article  ADS  Google Scholar 

  16. V. V. Yudin and Yu. A. Karygina, Crystallography Reports, 46, 922–926 (2001).

    Article  ADS  Google Scholar 

  17. B. Sutherland, Phys. Rev. B, 35, 9529–9534 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  18. R. M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett, London (1995).

    Google Scholar 

  19. V. V. Yudin and S. A. Shchegoleva, “Amorphous films, glasses, and quasicrystals as complex systems [in Russian],” Plenary talk at 6th Interdisciplinary Seminar “Fractals and Applied Synergetics”, IMM RAS, Moscow (2005).

  20. J. L. Casti, Connectivity, Complexity, and Catastrophe in Large-Scale Systems (Intl. Ser. Appl. Syst. Anal., Vol. 7), Wiley, Chichester (1979).

    MATH  Google Scholar 

  21. V. V. Yudin, E. A. Lyubchenko, and T. A. Pisarenko, Infodynamics of Web Structures [in Russian], Far-East State Univ., Vladivostok (2003).

    Google Scholar 

  22. V. V. Yudin and A. D. Ershov, Sov. Phys. J., 13, 729–732 (1970).

    Article  Google Scholar 

  23. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 2, Amer. Math. Soc., Providence, R. I. (1967).

    MATH  Google Scholar 

  24. V. V. Yudin, P. L. Titov, and A. N. Mikhalyuk, Theor. Math. Phys., 164, 905–919 (2010).

    Article  Google Scholar 

  25. N. F. G. Martin and J. W. England, Mathematical Theory of Entropy, Cambridge Univ. Press, Cambridge (2011).

    MATH  Google Scholar 

  26. V. V. Yudin, P. L. Titov, and A. N. Mikhalyuk, Bull. Russ. Acad. Sci. Phys., 73, 1269–1276 (2009).

    Article  MATH  Google Scholar 

  27. R. E. Edwards, Functional Analysis: Theory and Applications, Holt, Rinehart, and Winston, New York (1965).

  28. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).

    Google Scholar 

  29. A. I. Olemskoi and A. Ya. Flat, Phys. Usp., 36, 1087–1128 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Ananthakrishna and T. Balasubramanian, Bull. Mater. Sci., 10, 77–83 (1988).

    Article  Google Scholar 

  31. L. Pietronero and E. Tosatti, eds., Fractals in Physics (Proc. 6th Trieste Intl. Symp., Trieste, Italy, 9–12 July 1985), North-Holland, Amsterdam (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Startzev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 173, No. 1, pp. 71–88, October, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudin, V.V., Startzev, E.S. The Fibonacci fractal is a new fractal type. Theor Math Phys 173, 1387–1402 (2012). https://doi.org/10.1007/s11232-012-0121-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0121-7

Keywords

Navigation