Skip to main content
Log in

Three mean-field models for bimolecular reactions proceeding on planar supported catalysts

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of \(A_1+A_2\rightarrow A_1A_2\) reaction on supported catalysts is investigated numerically using three phenomenological models. The first of them is based on PDEs and includes: the bulk diffusion of both reactants from a bounded vessel towards the adsorbent and the product bulk one into the same vessel, adsorption and desorption of molecules of both reactants, and surface diffusion of adsorbed particles described by the diffusion flux based on the particle jumping into a nearest vacant adsorption site. The second model based on the ODEs is derived by averaging of the first one. The third mixed model is based on the PDEs for the bulk diffusion of both reactants and ODEs for the adsorbates surface diffusion on the supported catalyst which is composed of the active in reaction catalyst particle and inactive support. All three models are solved numerically and their results are compared. Two distinct arrangements of the adsorption sites are used for numerical calculations: (i) concentrations of the adsorption sites of the catalyst particle and support are equal, (ii) the total amount of adsorption sites of the active and inactive in reaction surface parts are the same. Calculations are performed for the case where: (i) molecules of both reactants adsorb only on the support and (ii) particles of one reactant adsorb on the active part while molecules of the other one adsorb on the support. The influence of the surface diffusivity, jump rate constants of the escaped particles of both adsorbates via the catalyst-support interface, and size of the active catalyst particle (or size-dependent distribution of active sites in the second case of their arrangement) on the catalytic reactivity of the supported catalyst is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.Y. Murzin, Ind. Eng. Chem. Res. 44, 1688 (2005)

    Article  CAS  Google Scholar 

  2. T.G. Mattos, F.D.A. Aarão Reis, J. Catal. 263, 67 (2009)

    Article  CAS  Google Scholar 

  3. L.J. Broadbelt, R.Q. Snurr, Appl. Catal. A 200, 23 (2000)

    Article  CAS  Google Scholar 

  4. V.P. Zhdanov, B. Kasemo, Surf. Sci. Rep. 39, 25 (2000)

    Article  CAS  Google Scholar 

  5. H. Lynggaard, A. Andreasen, C. Stegelmann, P. Stoltze, Prog. Surf. Sci. 77, 71 (2004)

    Article  CAS  Google Scholar 

  6. L. Cwiklik, B. Jagoda-Cwiklik, M. Frankowicz. arXiv:physics/0409153v2 [physics.chem-ph] 20 Jan 2005

  7. T.G. Mattos, F.D.A. Aarão Reis. arXiv:0906.3063v1 [cond-mat.stat-mech] 17 Jun 2009

  8. L. Cwiklik, B. Jagoda-Cwiklik, M. Frankowicz, Appl. Surf. Sci. 252, 778 (2005)

    Article  CAS  Google Scholar 

  9. L. Cwiklik, B. Jagoda-Cwiklik, M. Frankowicz, Surf. Sci. 572, 318 (2004)

    Article  CAS  Google Scholar 

  10. E.V. Kovaliov, E.D. Resnyanskii, V.I. Elokhin, B.S. Bal’zhinimaev, A.V. Myshlyatsev, Phys. Chem. Chem. Phys. 5, 784 (2003)

    Article  Google Scholar 

  11. L. Cwiklik. arXiv:0710.4785v1 [cond-mat.mtrl-sci] 25 Oct 2007

  12. L. Cwiklik, Chem. Phys. Lett. 449, 304 (2007)

    Article  CAS  Google Scholar 

  13. V. Skakauskas, P. Katauskis, J. Math. Chem. 51, 492 (2013)

    Article  CAS  Google Scholar 

  14. V. Skakauskas, P. Katauskis, J. Math. Chem. 51, 1654 (2013)

    Article  CAS  Google Scholar 

  15. V. Skakauskas, P. Katauskis, J. Math. Chem. 52, 1350 (2014)

    Article  CAS  Google Scholar 

  16. V. Skakauskas, P. Katauskis, J. Math. Chem. (2014). doi:10.1007/s10910-014-0440-2

  17. V.P. Zhdanov, B. Kasemo, J. Catal. 170, 377 (1997)

    Article  CAS  Google Scholar 

  18. A.N. Gorban, H.P. Sargsyan, H.A. Wahab, Math. Model. Nat. Phenom. 6, 184262 (2011). arXiv:1012.2908v4 [cond-mat.mtrl-sci]

    Article  Google Scholar 

  19. A.A. Samarskii, The theory of difference schemes (Marcel Dekker, New York, 2001)

    Book  Google Scholar 

  20. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes: the art of scientific computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  21. L.F. Shampine, I. Gladwell, S. Thompson, C. Beardah, Solving ODEs with MATLAB (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Skakauskas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakauskas, V., Katauskis, P. Three mean-field models for bimolecular reactions proceeding on planar supported catalysts. J Math Chem 53, 2123–2136 (2015). https://doi.org/10.1007/s10910-015-0542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0542-2

Keywords

Navigation