Skip to main content
Log in

On the control by electromagnetic fields of quantum systems with infinite dimensional Hilbert space

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We analyze the control by electromagnetic fields of quantum systems with infinite dimensional Hilbert space and a discrete spectrum. Based on recent mathematical results, we rigorously show under which conditions such a system can be approximated in a finite dimensional Hilbert space. For a given threshold error, we estimate this finite dimension in terms of the used control field. As illustrative examples, we consider the cases of a rigid rotor and of a harmonic oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Brif, R. Chakrabarti, H. Rabitz, New. J. Phys. 12, 075008 (2010)

    Article  Google Scholar 

  2. W.S. Warren, H. Rabitz, M. Dahleh, Sciences 259, 1581 (1993)

    Article  CAS  Google Scholar 

  3. D.D’Alessandro, Introduction to Quantum Control and Dynamics, Applied Mathematics and Nonlinear Science Series (Chapman & Hall/CRC, Boca Raton, 2008)

  4. M. Shapiro, P. Brumer, Principles of Quantum Control of Molecular Processes (Wiley, New-York, 2003)

    Google Scholar 

  5. S. Rice, M. Zhao, Optimal Control of Quantum Dynamics (Wiley, New-York, 2000)

    Google Scholar 

  6. V. Ramakrishna et al., Phys. Rev. A 51, 960 (1995)

    Article  CAS  Google Scholar 

  7. C. Altafini, Phys. Rev. A 70, 062321 (2004)

    Article  Google Scholar 

  8. S.G. Schirmer, H. Fu, A.I. Solomon, Phys. Rev. A 63, 063410 (2001)

    Article  Google Scholar 

  9. S.G. Schirmer, A.I. Solomon, J.V. Leahy, J. Phys. A Math. Gen. 35, 8551 (2002)

    Article  Google Scholar 

  10. G.M. Huang, T.J. Tarn, J.W. Clark, J. Math. Phys. 24, 2608 (1983)

    Article  Google Scholar 

  11. G. Turinici, On the controllability of bilinear quantum systems, in Mathematical Models and Methods for Ab Inition Quantum Chemistry, vol. 74, Lecture Notes in Chemistry, ed. by M. Defranceschi, C. Le Bris (Springer, Berlin, 2000)

    Google Scholar 

  12. D.J. Tannor, Introduction to Quantum Mechanics: A Time-dependent Perspective (University Science Books, Sausalito, 2007)

    Google Scholar 

  13. D.M. Reich, M. Ndong, C.P. Koch, J. Chem. Phys. 136, 104103 (2012)

    Article  Google Scholar 

  14. Y. Maday, G. Turinici, J. Chem. Phys. 118, 8191 (2003)

    Article  CAS  Google Scholar 

  15. W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998)

    Article  CAS  Google Scholar 

  16. A. Messiah, Quantum Mechanics (Dunod, Paris, 1995)

    Google Scholar 

  17. M.H. Levitt, Spin Dynamics: Basis of Nuclear Magnetic Resonance (Wiley, New York, 2008)

    Google Scholar 

  18. R.R. Ernst, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, International Series of Monographs on Chemistry (Oxford University Press, Oxford, 1990)

    Google Scholar 

  19. N. Khaneja, R. Brockett, S.J. Glaser, Phys. Rev. A 63, 032308 (2001)

    Article  Google Scholar 

  20. M. Lapert, Y. Zhang, M. Braun, S.J. Glaser, D. Sugny, Phys. Rev. Lett. 104, 083001 (2010)

    Article  CAS  Google Scholar 

  21. E. Assémat, M. Lapert, Y. Zhang, M. Braun, S.J. Glaser, D. Sugny, Phys. Rev. A 82, 013415 (2010)

    Article  Google Scholar 

  22. Y. Zhang, M. Lapert, M. Braun, D. Sugny, S.J. Glaser, J. Chem. Phys. 134, 054103 (2011)

    Article  CAS  Google Scholar 

  23. M. Reed, B. Simon, Funtional Analysis, Methods of Modern Mathematical Physics (Academic Press, London, 1980)

    Google Scholar 

  24. T. Chambrion, P. Mason, M. Sigalotti, U. Boscain, Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 329 (2009)

    Article  Google Scholar 

  25. M. Mirrahimi, P. Rouchon, IEEE Trans. Autom. Control 49, 745 (2004)

    Article  Google Scholar 

  26. T. Chambrion, Automatica 48, 2040 (2012)

    Article  Google Scholar 

  27. N. Boussaïd, M. Caponigro, T. Chambrion, Weakly-coupled systems in quantum control. IEEE Trans. Autom. Control 58(9), 2205–2216 (2013)

    Article  Google Scholar 

  28. T.H. Gronwall, Ann. Math. 20, 4 (1919)

    Google Scholar 

  29. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

    Article  CAS  Google Scholar 

  30. M. Spanner, E.A. Shapiro, M. Ivanov, Phys. Rev. Lett. 92, 093001 (2004)

    Article  Google Scholar 

  31. T. Seideman, E. Hamilton, Adv. At. Mol. Opt. Phys. 52, 289 (2006)

    Article  Google Scholar 

  32. M. Leibscher, I.S. Averbukh, H. Rabitz, Phys. Rev. Lett. 90, 213001 (2003)

    Article  CAS  Google Scholar 

  33. J. Salomon, C.M. Dion, G. Turinici, J. Chem. Phys. 123, 144310 (2005)

    Article  Google Scholar 

  34. M. Lapert, D. Sugny, Phys. Rev. A 85, 063418 (2012)

    Article  Google Scholar 

  35. E. Assémat, L. Attar, M.-J. Penouilh, M. Picquet, A. Tabard, Y. Zhang, S.J. Glaser, D. Sugny, Chem. Phys. 405, 71 (2012)

    Article  Google Scholar 

  36. J. Werschnik, E.K.U. Gross, J. Phys. B 40, 175 (2007)

    Article  Google Scholar 

  37. M. Lapert, R. Tehini, G. Turinici, D. Sugny, Phys. Rev. A 78, 023408 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from the Conseil Régional de Bourgogne and the QUAINT coordination action (EC FET-Open) are gratefully acknowledged. E. Assémat is supported by the Koshland Center for basic Research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sugny.

Appendix: Estimate of the dimension of the finite dimensional Hilbert space

Appendix: Estimate of the dimension of the finite dimensional Hilbert space

We give in the appendix some indications about the way to compute a precise estimate of the dimension of the finite dimensional Hilbert space in the case of a planar rotor.

For some \(\epsilon \), we find \(N\) according to (14) and we consider the dynamical evolution of the system in the subspace \(\mathcal {H}^{(N)}\), which is governed by Eq. (7):

$$\begin{aligned} \frac{1}{i}\frac{d}{d t}|\psi _N(t)\rangle = \left[ H_0^{(N)}+u(t)H_1^{(N)}\right] |\psi _N(t)\rangle . \end{aligned}$$

Assuming that the initial state is \(|\phi _1\rangle \), a general solution reads as follows:

$$\begin{aligned} |\psi _N(t)\rangle&= e^{-iH_0^{(N)}t}|\phi _1\rangle \nonumber \\&\qquad +\,\int _0^t e^{-i(t-s)H_0^{(N)}}u(s)H_1^{(N)}|\psi _N(s)\rangle ds. \end{aligned}$$
(16)

Replacing \(|\psi _N(t)\rangle \) in the integral term of Eq. (16) by its value given by the same equation (16), we get:

$$\begin{aligned} |\psi _N(t)\rangle&= e^{-iH_0^{(N)}t}|\phi _1\rangle + \int _0^t e^{-i(t-s)H_0^{(N)}}u(s)H_1^{(N)}e^{-iH_0^{(N)}s}|\phi _1\rangle ds \nonumber \\&\quad \!\!+\,\int _0^t\int _0^{s_1} e^{\!-\!i(t\!-\!s_1)H_0^{(N)}}H_1^{(N)} e^{-i(s_1-s_2)H_0^{(N)}}H_1^{(N)}u(s_1)u(s_2)|\psi _N(s_2)\rangle ds_1 ds_2. \end{aligned}$$
(17)

For a fixed number \(p\ge 2\), we repeat this operation \(p-1\) times, which leads to:

$$\begin{aligned} |\psi _N(t)\rangle&= e^{-iH_0^{(N)}t}|\phi _1\rangle \nonumber \\&\quad +\,\sum _{k=1}^{p-1}\int _{0\le s_k\le s_{k-1} \le \cdots \le s_1\le t} e^{-i(t-s_1)H_0^{(N)}}H_1^{(N)} \nonumber \\&\quad \cdots e^{-iH_0^{(N)}(s_{k-1}-s_k)}u(s_1)u(s_2)\cdots u(s_k)|\phi _1\rangle ds_1ds_2\cdots ds_k \nonumber \\&\quad +\,\int _{0\le s_p\le s_{p-1} \le \cdots \le s_1\le t} e^{-i(t-s_1)H_0^{(N)}}H_1^{(N)} \nonumber \\&\quad \cdots e^{-iH_0^{(N)}(s_{p-1}-s_p)}H_1^{(N)}u(s_1)u(s_2)\cdots u(s_k)|\psi _N(s_k)\rangle ds_1ds_2\cdots ds_k. \end{aligned}$$
(18)

We next compute the projection of this state onto \(|\phi _{p+1}\rangle \). Using the tridiagonal structure of the operator \(H_1^{(N)}\), one deduces that the first two terms of the right-hand side of Eq. (18) have no contribution. One finally arrives at:

$$\begin{aligned} \langle \phi _{p+1}|\psi _N(t)\rangle =&\int _{0\le s_p\le s_{p-1} \le \cdots \le s_1\le t} \langle \phi _{p+1}|e^{-i(t-s_1)H_0^{(N)}}H_1^{(N)} \nonumber \\&\cdots e^{-iH_0^{(N)}(s_{p-1}-s_p)}H_1^{(N)}\prod _{i=1}^p u(s_i) |\psi _N(s_p)\rangle ds_1ds_2\cdots ds_p, \end{aligned}$$
(19)

where the integrand contains \(p\) factors \(H_1^{(N)}\). A majorization of this term is given by:

$$\begin{aligned} |\langle \phi _{p+1}|\psi _N(t)\rangle | \le&\int _{0\le s_p\le s_{p-1} \le \cdots \le s_1\le t} \Vert H_1^{(N)} e^{i(s_{p-1}-s_p)H_0^{(N)}}H_1^{(N)} \nonumber \\&\!\cdots e^{iH_0^{(N)}(t-s_1)}|\phi _{l\!+\!1}\!\rangle \Vert \prod _{i=1}^p|u(s_i)|\sqrt{\langle \psi _N(s_p)|\psi _N(s_p)\rangle } ds_1ds_2 \cdots ds_p. \end{aligned}$$
(20)

For the planar rotor, we denote by \(c\) the absolute value of the coupling constant. Straightforward computations give

$$\begin{aligned} \sup _{s_1,\cdots ,s_p} \left\| H_1^{(N)}e^{i(s_{p-1}-s_p)H_0^{(N)}}H_1^{(N)}\cdots e^{iH_0^{(N)}(t-s_1)}|\phi _{p+1}\rangle \right\| \le 2^pc^p. \end{aligned}$$
(21)

Indeed, the product \(H|\psi \rangle \), with \(H\) tridiagonal, can always be written as \(H|\psi \rangle = a|\psi _1\rangle + b|\psi _2\rangle + c|\psi _3\rangle \), where \(|\langle \psi _i |\psi _i\rangle |\le | \langle \psi |\psi \rangle |\) and \((a,b,c)\) are the maxima of the nonzero diagonals. In our case, one of the diagonal is void so \(\Vert H |\psi \rangle \Vert \le 2c\). We can also show by induction that

$$\begin{aligned} \int _{0\le s_p\le s_{p-1} \le \cdots \le s_1\le t}\prod _{i=1}^p |u(s_i)|ds_1\cdots ds_p=\frac{1}{p!}\left( \int _0^t|u(s)|ds\right) ^p, \end{aligned}$$
(22)

which leads to

$$\begin{aligned} |\langle \phi _{p+1}|\psi _N(t)\rangle |\le 2^pc^p \frac{K^p}{p !}. \end{aligned}$$
(23)

The estimate (23) is valid in \(\mathcal {H}^{(N)}\). If one considers the actual solution of the infinite dimensional system in \(\mathcal {H}\), one yields, for \(\epsilon \) and \(N\) chosen according to (14),

$$\begin{aligned} |\langle \phi _{p+1}|\psi (t)\rangle |\le 2^pc^p \frac{K^p}{p !}+\varepsilon . \end{aligned}$$
(24)

Estimate (24) is correct for every \(\varepsilon >0\). Letting \(\varepsilon \) goes to zero, one finally gets

$$\begin{aligned} |\langle \phi _{p+1}|\psi (t)\rangle |\le 2^pc^p \frac{K^p}{p !} \end{aligned}$$
(25)

Estimate (25) can in turn be used to refine the condition (14). Since \(c=1/2\), we obtain:

$$\begin{aligned} |\langle \phi _{p+1}|\psi (t)\rangle |\le \frac{K^p}{p !}, \end{aligned}$$
(26)

which gives an estimate of the probability of transitions outside the subspace \(\mathcal {H}^{(p)}\). If \(K\le (\varepsilon p !)^{(1/p)}\), then this probability is lower than \(\varepsilon \). In addition, in the case \(K^{p+1}<2\varepsilon p!\), we get \(\frac{K^p}{p!}<\frac{2\varepsilon }{K}\) and

$$\begin{aligned} \int _0^t \Vert u(t)P^{(p)}H_1|\tilde{\psi }(\tau )\rangle d\tau \Vert \le \frac{2\varepsilon }{K}\frac{K}{2}, \end{aligned}$$
(27)

i.e. the dynamics in the finite subspace \(\mathcal {H}^{(p)}\) is close to \(\varepsilon \) to the exact dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assémat, E., Chambrion, T. & Sugny, D. On the control by electromagnetic fields of quantum systems with infinite dimensional Hilbert space. J Math Chem 53, 374–385 (2015). https://doi.org/10.1007/s10910-014-0429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0429-7

Keywords

Navigation