Skip to main content
Log in

Constructing quantum mechanical models from diabatic schemes: external field modulation of effective energy barriers for bond breaking/formation processes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We have recently proposed an approach where chemical transformations can be described as quantum processes involving the modulation of entangled states by an applied external field (Arteca and Tapia in Phys Rev A 84:012115, 2011). In practical implementations, we gain insight into these processes by using simple quantum-mechanical models derived from diabatic schemes. In this context, reactant, product, and, eventually, intermediate species, are assigned to diabatic basis functions, and then entangled by an external field into a quantum state from which all observable properties of the chemical reaction should emerge. Here, we extend our previous model for bond breaking/formation in diatomic molecules (Arteca et al. in J Math Chem 50:949, 2012). We consider the entire manifold of semiclassical models defined by only two diabatic basis functions: a harmonic well for the “molecular” bound state, and an exponential potential energy function for the asymptotically separated fragments (the “product” channel). Using a two-parameter space to describe all models, we determine how the topology of the total energy function is affected by the shape of the applied field. We show that strong and weak local couplings with the external field modify substantially the occurrence of energy barriers, in contrast to using the uniform (i.e., space-invariant) coupling employed in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005)

    Article  CAS  Google Scholar 

  2. R.V. Krems, A. Dalgarno, Phys. Rev. A 68, 013406 (2003)

    Article  Google Scholar 

  3. S. Cornish, Physics 1, 24 (2008)

    Article  Google Scholar 

  4. R. Côté, Nat. Phys. 2, 583 (2006)

    Article  Google Scholar 

  5. Y. Xia, L. Deng, J. Yin, Appl. Phys. B 81, 459 (2005)

    Article  CAS  Google Scholar 

  6. A. Giusti-Suzor, F.H. Mies, L.F. Di Mauro, E. Charron, B. Yang, J. Phys. B 28, 309 (1995)

    Article  CAS  Google Scholar 

  7. A.D. Bandrauk, E.-W.S. Sedik, C.F. Matta, Mol. Phys. 104, 95 (2006)

    Article  CAS  Google Scholar 

  8. P. Král, I. Thanapoulos, M. Shapiro, Rev. Mod. Phys. 79, 53 (2007)

    Article  Google Scholar 

  9. J.I. Cirac, P. Zoller, Phys. Today 57, 38 (2003)

    Article  Google Scholar 

  10. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)

    Article  CAS  Google Scholar 

  11. A. André, D, DeMille, J.M. Doyle, M.D. Lukin, S.E. Maxwell, P. Rabl, R.J. Schoelkopf, P. Zoller, Nat. Phys. 22, 636 (2006).

  12. G.A. Arteca, O. Tapia, Phys. Rev. A 84, 012115 (2011)

    Article  Google Scholar 

  13. G.A. Arteca, J.M. Aulló, O. Tapia, J. Math. Chem. 50, 949 (2012)

    Article  CAS  Google Scholar 

  14. O. Tapia, Adv. Quantum Chem. 56, 31 (2009)

    Article  CAS  Google Scholar 

  15. O. Tapia, Adv. Quantum Chem. 61, 49 (2011)

    Article  CAS  Google Scholar 

  16. R. Crespo, M.-C. Piqueras, J.M. Aulló, O. Tapia, Int. J. Quantum Chem. 111, 263 (2011)

    Article  CAS  Google Scholar 

  17. G.A. Arteca, O. Tapia, Int. J. Quantum Chem. 107, 382 (2007)

    Article  CAS  Google Scholar 

  18. G.A. Arteca, J.P. Rank, O. Tapia, J. Theor. Comp. Chem. 6, 869 (2007)

    Article  CAS  Google Scholar 

  19. G.A. Arteca, J.P. Rank, O. Tapia, Int. J. Quantum Chem. 108, 651 (2008)

    Article  CAS  Google Scholar 

  20. G.A. Arteca, J.P. Rank, O. Tapia, Int. J. Quantum Chem. 108, 1810 (2008)

    Article  CAS  Google Scholar 

  21. G.A. Arteca, O. Tapia, J. Math. Chem. 35, 1 (2004)

    Article  CAS  Google Scholar 

  22. G.A. Arteca, O. Tapia, J. Math. Chem. 35, 159 (2004)

    Article  CAS  Google Scholar 

  23. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987)

    Google Scholar 

  24. A. Hishikawa, A. Iwamae, K. Yamanouchi, Phys. Rev. Lett. 83, 1127 (1999)

    Article  CAS  Google Scholar 

  25. L.J. Butler, Annu. Rev. Phys. Chem. 49, 125 (1998)

    Article  CAS  Google Scholar 

  26. H. Feshbach, Ann. Phys. 5, 357 (1958)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gustavo A. Arteca acknowledges support by NSERC (Canada) and the continued hospitality of the Department of Physical and Analytical Chemistry (Uppsala, Sweden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Arteca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arteca, G.A., Laverdure, L. & Tapia, O. Constructing quantum mechanical models from diabatic schemes: external field modulation of effective energy barriers for bond breaking/formation processes. J Math Chem 52, 2395–2410 (2014). https://doi.org/10.1007/s10910-014-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0377-2

Keywords

Navigation