Skip to main content
Log in

Computer modeling of synthesis of calcium hydroxyapatite (CHAp)

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In our previous papers (Mackevičius et al. in Cent Eur J Chem 10(2):380–385, 2012, J Math Chem 50(8):2291–2302, 2012), we presented a method for estimation of the diffusion and reaction rates of synthesis at high temperatures using limited information, such as synthesis time and dimensions of reactants, from real laboratory experiments. The method was limited to the two-reactant case. In order to extend the method to the three-reactant case, the form and distribution of particles of three reactants must satisfy requirements of periodicity and symmetry. In our model, we achieve this by taking rhombic particles and a triangular synthesis space. Solving in the latter an inverse modeling problem, we obtain explicit formulas for the diffusion coefficient and reaction rate as functions of temperature by calculating the activation energies and other parameters of CHAp synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Mackevičius, F. Ivanauskas, A. Kareiva, Mathematical approach to investigation of synthesis processes at high temperatures. Cent. Eur. J. Chem. 10(2), 380–385 (2012)

    Article  Google Scholar 

  2. M. Mackevičius, F. Ivanauskas, A. Kareiva, D. Jasaitis, A closer look at the computer modeling and sintering optimization in the preparation of YAG. J. Math. Chem. 50(8), 2291–2302 (2012)

    Article  Google Scholar 

  3. B.N. Arzamasov, V.N. Simonov, Circulation method for depositing diffusion coatings. Met. Sci. Heat Treat. 52(9–10), 403–407 (2011)

    Article  CAS  Google Scholar 

  4. P. Budrugeac, An iterative model-free method to determine the activation energy of non-isothermal heterogeneous processes. Thermochim. Acta 511(1–2), 8–16 (2010)

    Article  CAS  Google Scholar 

  5. F. Ivanauskas, A. Kareiva, B. Lapcun, On the modeling of solid state reactions. Synthesis YAG. J. Math. Chem. 37(4), 365–476 (2005)

    Article  CAS  Google Scholar 

  6. H.H. Mohamed, C.B. Mendive, R. Dillert, D.W. Bahnemann, Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO2 nanoparticles: a stopped flow study. J. Phys. Chem. A 115(11), 2139–2147 (2011)

    Article  CAS  Google Scholar 

  7. B. Adnadevic, B. Jankovic, D.M. Minic, Kinetics of the apparent isothermal and non-isothermal crystallization of the alpha-Fe phase within the amorphous Fe81B13Si4C2 alloy. J. Phys. Chem. Solids 71(7), 927–934 (2010)

    Article  CAS  Google Scholar 

  8. H. Belhouchet, M. Hamidouche, N. Bouaouadja, V. Garnier, G. Fantozzi, Kinetics of mullite formation in zircon and boehmite mixture. Ann. Chim. Sci. Mater. 35(1), 17–25 (2010)

    Article  CAS  Google Scholar 

  9. C. Chen, W.L. Gong, W. Lutze, I.L. Pegg, Kinetics of fly ash geopolymerization. J. Mater. Sci. 46(9), 3073–3083 (2011)

    Article  CAS  Google Scholar 

  10. K. Muraleedharan, V.M.A. Mujeeb, M.H. Aneesh, T. Gangadevi, M.P. Kannan, Effect of pre-treatments on isothermal decomposition kinetics of potassium metaperiodate. Thermochim. Acta 510(1–2), 160–167 (2010)

    Article  CAS  Google Scholar 

  11. F. Xia, J. Brugger, A. Pring, Arsenian pyrite formation: solid-state diffusion or dissolution-reprecipitation replacement? In: Smart Science for Exploration and Mining, Proceedingsof the 10th Biennial SGA Meeting of The Society for Geology Applied to Mineral Deposits vol. 2 (2010), pp. 700–702

  12. C.J. Deng, J.M. Cai, R.H. Liu, Kinetic analysis of solid-state reactions: evaluation of approximations to temperature integral and their applications. Solid State Sci. 11(8), 1375–1379 (2009)

    Article  CAS  Google Scholar 

  13. A. Perejon, P.E. Sanchez-Jimenez, J.M. Criado, L.A. Perez-Maqueda, Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J. Phys. Chem. B 115(8), 1780–1791 (2011)

    Article  CAS  Google Scholar 

  14. W. Preis, Modelling of surface exchange reactions and diffusion in composites and polycrystalline materials. Montash. Chem. 140(9), 1059–1068 (2009)

    Article  CAS  Google Scholar 

  15. M. Vallet-Regi, J. Chem. Soc. Dalton Trans. 2, 97 (2001)

    Article  Google Scholar 

  16. E. Landi, G. Celotti, G. Logroscino, A. Tampieri, J. Eur. Ceram. Soc. 23, 2931 (2003)

    Article  CAS  Google Scholar 

  17. M. Shirkhanzadeh, J. Mater. Sci. Mater. Med. 16, 37 (2005)

    Article  CAS  Google Scholar 

  18. C.K. Chua, K.F. Leong, K.H. Tan, F.E. Wiria, C.M. Chean, J. Mater. Sci. Mater. Med. 15, 1113 (2004)

    Article  CAS  Google Scholar 

  19. L. Gan, J. Wang, A. Tache, N. Valiquette, D. Deporter, R. Pilliar, Biomaterials 25, 5313 (2004)

    Article  CAS  Google Scholar 

  20. S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I.A. Kim, J.-W. Shin, Biomaterials 25, 5715 (2004)

    Article  CAS  Google Scholar 

  21. A.C. Tas, F. Aldinger, J. Mater. Sci. Mater. Med. 16, 167 (2005)

    Article  CAS  Google Scholar 

  22. S.R. Ramanan, R. Venkatesh, Mater. Lett. 58, 3320 (2004)

    Article  CAS  Google Scholar 

  23. H. Zreiqat, R. Roest, S. Valenzuela, A. Milev, B. Ben-Nissan, Key Eng. Mater. 284–286, 541 (2005)

    Article  Google Scholar 

  24. H.K. Varma, S.S. Babu, Ceram. Int. 31, 109 (2005)

    Article  CAS  Google Scholar 

  25. F. Miyaji, Y. Kono, Y. Suyama, Mater. Res. Bull. 40, 209 (2005)

    Article  CAS  Google Scholar 

  26. I. Bogdanoviciene, A. Beganskiene, K. Tonsuaadu, J. Glaser, H.-J. Meyer, A. Kareiva, Mater. Res. Bull. 41, 1754 (2006)

    Article  CAS  Google Scholar 

  27. I. Bogdanoviciene, K. Tonsuaadu, A. Kareiva, Polish J. Chem. 83, 47 (2009)

    CAS  Google Scholar 

  28. I. Bogdanoviciene, A. Beganskiene, A. Kareiva, R. Juskenas, A. Selskis, R. Ramanauskas, K. Tonsuaadu, V. Mikli, Chemija 21, 98 (2010)

  29. I. Bogdanoviciene, K. Tonsuaadu, V. Mikli, I. Grigoraviciute-Puroniene, A. Beganskiene, A. Kareiva, Cent. Eur. J. Chem. 8, 1323 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research presented in the introduction section was funded by a grant (No. TAP-LLT-07/2012) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mažvydas Mackevičius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackevičius, M., Ivanauskas, F., Kareiva, A. et al. Computer modeling of synthesis of calcium hydroxyapatite (CHAp). J Math Chem 51, 1249–1257 (2013). https://doi.org/10.1007/s10910-012-0139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0139-y

Keywords

Navigation