Skip to main content

Advertisement

Log in

The Effects of Pressure on the Structural, Electronic, and Lattice Dynamical Properties of FeSe Superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Motivated by the experimental huge enhancement of the superconducting transition temperature \(T_\mathrm{c}\) in FeSe superconductor under high pressure, we perform first-principles calculations of the evolutions of structural, electronic, and lattice dynamical properties of FeSe at varying hydrostatic pressures up to 8 GPa. The pressure response is anisotropic with a larger compressibility along \(c\)-axis. At ambient pressure, Fermi surface nesting between hole and electron pockets induces spin density wave (SDW) order at the vector (\(\pi \), \(\pi \), 0) with a collinear antiferromagnetic structure. With the increase of pressure, the Fermi surface nesting is reduced, and therefore the SDW is suppressed, which could not enhance superconductivity based on the spin-fluctuation scenario. For the phonon dispersion, the bands have blue-shift except for the modes around 100 cm\(^{-1}\), indicating hardening of the vibration modes in a wide frequency range. Furthermore, the electron–phonon coupling constant and the corresponding \(T_\mathrm{c}\) by McMillan equation are calculated. However, there is no obvious enhancement of \(T_\mathrm{c}\) under pressure, which further rules out the conventional phonon-mediated superconductivity of FeSe. Maybe the local magnetic moment plays an important role for the superconductivity and enhancement of \(T_\mathrm{c}\) under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In the linear response method, the displacement of atoms can be viewed as a perturbation. Response functions such as total charge density and force induced on the atoms are linear with the perturbation. In the framework of DFPT [19], the total energy after perturbation can be obtained, while the force constants matrices are the second differential of the total energy. Then, the dynamical matrices, which correlate with phonon properties, can be obtained by Fourier transformation of force constants matrices.

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  2. J.H. Tapp, Z.J. Tang, B. Lv, K. Sasmal, B. Lorenz, P.C.W. Chu, A.M. Guloy, Phys. Rev. B. 78, 026403 (2008)

    Article  Google Scholar 

  3. A.S. Sefat, R.Y. Jin, M.A. McGuire, B.C. Sales, Phys. Rev. Lett. 101, 117004 (2008)

    Article  ADS  Google Scholar 

  4. K. Togano, A. Matsumoto, H. Kumakura, Solid State Commun. 152, 740 (2012)

    Article  ADS  Google Scholar 

  5. F.C. Hsu et al., Proc. Natl. Acad. Sci. 105, 14262 (2008)

    Article  ADS  Google Scholar 

  6. X.H. Chen, T. Wu, G. Wu, R.H. Liu, H. Chen, D.F. Fang, Nature 453, 761 (2008)

    Article  ADS  Google Scholar 

  7. G.F. Chen, Z. Li, D. Wu, G. Li, W.Z. Hu, J. Dong, P. Zheng, J.L. Luo, N.L. Wang, Phys. Rev. Lett. 100, 247002 (2008)

    Article  ADS  Google Scholar 

  8. A. Subedi, L.J. Zhang, D.J. Singh, M.H. Du, Phys. Rev. B 78, 134514 (2008)

    Article  ADS  Google Scholar 

  9. W. Wang, J.F. Sun, S.W. Li, H.Y. Lu, Physica C 472, 29 (2008)

    Article  ADS  Google Scholar 

  10. R. Khasanov, M. Bendele, K. Conder, H. Keller, E. Pomjakushina, V. Pomjakushin, New J. Phys. 12, 073024 (2010)

    Article  ADS  Google Scholar 

  11. T. Imai, K. Ahilan, F.L. Ning, T.M. McQueen, R.J. Cava, Phys. Rev. Lett. 102, 177005 (2009)

    Article  ADS  Google Scholar 

  12. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano, App. Phys. Lett. 93, 152505 (2008)

    Article  ADS  Google Scholar 

  13. G. Garbarino, A. Sow, P. Lejay, A. Sulpice, P. Toulemonde, W. Crichton, M. Mezouar, M. Núñez-Regueiro, Europhys. Lett. 86, 27001 (2009)

    Article  ADS  Google Scholar 

  14. J.N. Millican, D. Phelan, E.L. Thomas, J.B. Leão, E. Carpenter, Solid State Commun. 149, 707 (2009)

    Article  ADS  Google Scholar 

  15. K. Miyoshi, K. Morishita, E. Mutou, M. Kondo, O. Seida, K. Fujiwara, J. Takeuchi, S. Nishigori, J. Phys. Soc. Jpn. 83, 013702 (2014)

    Article  ADS  Google Scholar 

  16. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, K. Prassides, Phys. Rev. B 80, 064506 (2009)

    Article  ADS  Google Scholar 

  17. P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009); http://www.quantum-espresso.org

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  19. S. Baroni, S. de Gironcoli, A.D. Corso, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  20. S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987)

    Article  ADS  Google Scholar 

  21. A. Ciechan, M.J. Winiarski, M. Samsel-Czekała, Acta Physica Polonica A 121, 820 (2012)

    Google Scholar 

  22. R.S. Kumar, Y. Zhang, S. Sinogeikin, Y. Xiao, S. Kumar, P. Chow, A. L. Cornelius, C. Chen, J. Phys. Chem. B 114, 12597 (2010)

  23. D. Kasinathan, J. Kuneš, A. Lazicki, H. Rosner, C.S. Yoo, R.T. Scalettar, W.E. Pickett, Phys. Rev. Lett. 96, 047004 (2006)

    Article  ADS  Google Scholar 

  24. F.J. Ma, J. Wei, J. Hu, Z.Y. Lu, T. Xiang, Phys. Rev. Lett. 102, 177003 (2009)

    Article  ADS  Google Scholar 

  25. M.J. Han, S.Y. Savrasov, Phys. Rev. Lett. 103, 067001 (2009)

    Article  ADS  Google Scholar 

  26. P. Dai, J. Hu, E. Dagotto, Nat. Phys. 8, 709 (2012)

    Article  Google Scholar 

  27. M.H. Qin, S. Dong, H.B. Zhao, Y. Wang, J.-M. Liu, Z. Ren, New J. Phys. 16, 053027 (2014)

    Article  ADS  Google Scholar 

  28. W. Li, S. Dong, C. Fang, J. Hu, Phys. Rev. B 85, 100407(R) (2012)

    Article  ADS  Google Scholar 

  29. S. Dong, J.-M. Liu, E. Dagotto, Phys. Rev. Lett. 113, 187204 (2014)

    Article  ADS  Google Scholar 

  30. H.-Y. Cao, S. Chen, H. Xiang, X.-G. Gong, arXiv:1407.7145

  31. Q.Y. Wang et al., Chin. Phys. Lett. 29, 037402 (2013)

    Article  ADS  Google Scholar 

  32. P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975)

    Article  ADS  Google Scholar 

  33. T. Bazhirov, M.L. Cohen, Phys. Rev. B 86, 134517 (2012)

    Article  ADS  Google Scholar 

  34. Q.-Q. Ye, K. Liu, Z.-Y. Lu, Phys. Rev. B 88, 205130 (2013)

    Article  ADS  Google Scholar 

  35. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008)

    Article  ADS  Google Scholar 

  36. T. Yildirim, Phys. Rev. Lett. 101, 057010 (2008)

    Article  ADS  Google Scholar 

  37. Q. Si, E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008)

    Article  ADS  Google Scholar 

  38. F.J. Ma, Z.Y. Lu, T. Xiang, Phys. Rev. B 78, 224517 (2008)

    Article  ADS  Google Scholar 

  39. J. Zhao, D.-X. Yao, S. Li, T. Hong, Y. Chen, S. Chang, W. Ratcliff II, J.W. Lynn, H.A. Mook, G.F. Chen, J.L. Luo, N.L. Wang, E.W. Carlson, J. Hu, P. Dai, Phys. Rev. Lett. 101, 167203 (2008)

    Article  ADS  Google Scholar 

  40. J. Zhao, D.T. Adroja, D.-X. Yao, R. Bewley, S. Li, X.F. Wang, G. Wu, X.H. Chen, J. Hu, P. Dai, Nat. Phys. 5, 555 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

HY Lu thanks helpful discussions with Fa Wang, Xiangang Wan, Wan-Sheng Wang, Yuan-Yuan Xiang and Da Wang. This work is supported by the National Natural Science Foundation of China (Grant nos. 11104099, 11274311, U1232139 and 11304320), the Natural Science Foundation of Anhui Province (Grant nos. 1408085QA12 and KJ2012A252) and the College Students’ Innovative Training Program of Anhui Province (Grant no. AH201310373143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, HY., Wang, NN., Wei, MJ. et al. The Effects of Pressure on the Structural, Electronic, and Lattice Dynamical Properties of FeSe Superconductor. J Low Temp Phys 178, 355–366 (2015). https://doi.org/10.1007/s10909-014-1253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1253-y

Keywords

Navigation