Skip to main content
Log in

Study of Exotic Ions in Superfluid Helium and the Possible Fission of the Electron Wave Function

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

An electron in liquid helium forces open a cavity referred as an electron bubble. These objects have been studied in many past experiments. It has been discovered that under certain conditions other negatively charged objects can be produced but the nature of these “exotic ions” is not understood. We have made a series of experiments to measure the mobility of these objects, and have detected at least 18 ions with different mobility. We also find strong evidence that in addition to these objects there are ions present which have a continuous distribution of mobility. We then describe experiments in which we attempt to produce exotic ions by optically exciting an electron bubble to a higher energy quantum state. To within the sensitivity of the experiment, we have not been able to detect any exotic ions produced as a result of this process. We discuss three possible explanations for the exotic ions, namely impurities, negative helium ions, and fission of the electron wave function. Each of these explanations has difficulties but as far as we can see, of the three, fission is the only plausible explanation of the results which have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. An earlier experiment by Sommer [3] gave a value of 1.3 eV with an uncertainty which may be as large as 30 %.

  2. See page 62 of ref. [30].

  3. Note that we have also improved the accuracy of the temperature calibration since this thesis was written and so some of the data has been shifted in temperature by a small amount.

  4. Harvard Apparatus, Holliston, Massachusetts 01746.

  5. This is correct if the field penetration through the grids can be neglected.

  6. Lake Shore Cryotronics, Westerville, Ohio 43082.

  7. See the review by Donnelly and Barenghi [42].

  8. For more details, see Wei [43].

  9. In ref. [37] we have used a different form for the pulse shape and obtained similar results for the shape of the background.

  10. For a more detailed calculation of the structure of the normal electron bubble using density functional theory, see ref. [5]. This calculation finds the radius at which the density of the helium reaches one half of its bulk value to be at around 18 Å.

  11. A discussion of this question is provided in the review paper by Shikin [45].

  12. See, for example, McDaniel and Mason [46].

  13. Note that this estimate of the change in radius is based on Eq. 7 and therefore does not take into account any effect of the effective mass.

  14. For sputtering yields for helium see, for example, [53, 54].

  15. Suppression of the decay process would also be likely if the size of the bubble in the liquid had to increase for the decay to occur but this is not the case here.

  16. See, for example, Druyvesteyn and Penning [63].

  17. For a discussion of the process in which a barrier is inserted to separate a quantum system into two parts, see [69].

  18. These tips were prepared by the method we have already described in section 2.2.5.

  19. The laser power deposited into the top of the cell will result in a flow of normal fluid down the cell. However, the flow velocity is too small to have a significant effect on the arrival time of the ions.

  20. We thank Wei Guo for this suggestion.

  21. This experimental technique is described in refs. [19, 20].

  22. More details about this approach are described in a paper by Z. Xie, W. Wei, Y. Yang, and H.J. Maris, accepted for publication in the Journal of Experimental and Theoretical Physics.

References

  1. R.A. Ferrell, Phys. Rev. 108, 167 (1957)

    Article  ADS  Google Scholar 

  2. M.A. Woolf, G.W. Rayfield, Phys. Rev. Lett. 15, 235 (1965)

    Article  ADS  Google Scholar 

  3. W.T. Sommer, Phys. Rev. Lett. 12, 271 (1964)

    Article  ADS  Google Scholar 

  4. P. Roche, G. Deville, N.J. Appleyard, F.I.B. Williams, J. Low Temp. Phys. 106, 565 (1997)

    Article  ADS  Google Scholar 

  5. V. Grau, M. Barranco, R. Mayol, M. Pi, Phys. Rev. B 73, 064502 (2006)

    Article  ADS  Google Scholar 

  6. C.C. Grimes, G. Adams, Phys. Rev. B41, 6366 (1990)

    Article  ADS  Google Scholar 

  7. C.C. Grimes, G. Adams, Phys. Rev. B45, 2305 (1992)

    Article  ADS  Google Scholar 

  8. A.Y. Parshin, S.V. Pereverzev, JETP Lett. 52, 282 (1990)

    ADS  Google Scholar 

  9. A.Y. Parshin, S.V. Pereverzev, Sov. Phys. JETP 74, 68 (1992)

    Google Scholar 

  10. S.V. Pereversev, A.Y. Parshin, Phys. B 197, 347 (1994)

    Article  ADS  Google Scholar 

  11. J. Poitrenaud, F.I.B. Williams, Phys. Rev. Lett. 29, 1230 (1972)

    Article  ADS  Google Scholar 

  12. J. Poitrenaud, F.I.B. Williams, Phys. Rev. Lett. 32, 1213 (1974)

    Article  ADS  Google Scholar 

  13. T. Ellis, P.V.E. McClintock, Phys. Rev. Lett. 48, 1834 (1982)

    Article  ADS  Google Scholar 

  14. T. Ellis, P.V.E. McClintock, R.M. Bowley, J. Phys. C 16, L485 (1983)

    Article  ADS  Google Scholar 

  15. L. Meyer, F. Reif, Phys. Rev. 110, 279 (1958)

    Article  ADS  Google Scholar 

  16. L. Meyer, F. Reif, Phys. Rev. Lett. 5, 1 (1960)

    Article  ADS  Google Scholar 

  17. F. Reif, L. Meyer, Phys. Rev. 119, 1164 (1960)

    Article  ADS  Google Scholar 

  18. K.W. Schwarz, Phys. Rev. A 6, 837 (1972)

    Article  ADS  Google Scholar 

  19. J. Classen, C.-K. Su, M. Mohazzab, H.J. Maris, Phys. Rev. 57, 3000 (1998)

    Article  ADS  Google Scholar 

  20. D. Konstantinov, H.J. Maris, Phys. Rev. Lett. 90, 025302 (2003)

    Article  ADS  Google Scholar 

  21. A. Ghosh, H.J. Maris, Phys. Rev. B 72, 054512 (2005)

    Article  ADS  Google Scholar 

  22. A. Ghosh, H.J. Maris, Phys. Rev. Lett. 95, 265301 (2005)

    Article  ADS  Google Scholar 

  23. G.W. Rayfield, F. Reif, Phys. Rev. 136, A1194 (1964)

    Article  ADS  Google Scholar 

  24. C.S.M. Doake, P.W.F. Gribbon, Phys. Lett. 30A, 251 (1969)

    ADS  Google Scholar 

  25. G.G. Ihas, T.M. Sanders, Phys. Rev. Lett. 27, 383 (1971)

    Article  ADS  Google Scholar 

  26. G.G. Ihas, T.M. Sanders, in Proceedings of the 13th International Conference on Low Temperature Physics, ed. K.D. Timmerhaus, W.J. O’Sullivan and E.F. Hammel, (Plenum, New York, 1972), Vol. 1, p. 477

  27. G.G. Ihas, Ph.D. thesis, University of Michigan, 1971

  28. V.L. Eden, P.V.E. McClintock, Phys. Lett. 102A, 197 (1984)

    Article  ADS  Google Scholar 

  29. V.L. Eden, P.V.E. McClintock in 75th Jubilee Conference on Liquid \(^{4}\) Helium, p. 194, ed. by J.G.M. Armitage (World Scientific, Singapore, 1983)

  30. V.L. Eden, M. Phil. thesis, University of Lancaster, 1986

  31. C.D.H. Williams, P.C. Hendry, P.V.E. McClintock, Proceedings of the 18th International Conference on Low Temperature Physics, Jpn. J. Appl. Phys. 26, supplement 26–3, 105 (1987)

  32. C.L. Zipfel, Ph.D. thesis, University of Michigan, 1969, unpublished

  33. C.L. Zipfel, T.M. Sanders, in Proceedings of the 11th International Conference on Low Temperature Physics, ed. by J.F. Allen, D.M. Finlayson, D.M. McCall (St. Andrews University, St. Andrews, Scotland, 1969), p. 296

  34. J.A. Northby, Ph.D. thesis, University of Minnesota, 1966 (unpublished)

  35. J.A. Northby, T.M. Sanders, Phys. Rev. Lett. 18, 1184 (1967)

    Article  ADS  Google Scholar 

  36. H.J. Maris, J. Low Temp. Phys. 120, 173 (2000)

    Article  ADS  Google Scholar 

  37. W. Wei, Z.-L. Xie, G.M. Seidel, H.J. Maris, J. Low Temp. Phys. 171, 178 (2013)

    Article  ADS  Google Scholar 

  38. W. Wei, Z.-L. Xie, G.M. Seidel, H.J. Maris, J. Low Temp. Phys. 175, 70 (2014)

  39. S. Cunsolo, Nuovo Cimento 21, 76 (1961)

    Article  Google Scholar 

  40. W. Wei, Ph.D. thesis, Brown University, 2012

  41. A.C. Anderson, J.I. Connolly, J.C. Wheatley, Phys. Rev. 135, A910 (1964)

    Article  ADS  Google Scholar 

  42. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

  43. W. Wei, Ph.D. thesis, Brown University, 2012, chapter 4

  44. K. Kawasaki, K. Tsukagoshi, K. Kono, J. Low Temp. Phys. 138, 899 (2005)

    Article  ADS  Google Scholar 

  45. V.B. Shikin, Sov. Phys. Usp. 20, 226 (1977)

    Article  ADS  Google Scholar 

  46. E.W. McDaniel, E.A. Mason, Transport Properties of Ions in Gases (Wiley, New York, 1988)

    Google Scholar 

  47. B.D. Josephson, J. Lekner, Phys. Rev. Lett. 23, 111 (1969)

    Article  ADS  Google Scholar 

  48. R. Barrera, G. Baym, Phys. Rev. A6, 1558 (1972)

    Article  ADS  Google Scholar 

  49. R.M. Bowley, J. Phys. C 4, 1645 (1971)

    Article  ADS  Google Scholar 

  50. W.I. Glaberson, W.W. Johnson, J. Low Temp. Phys. 20, 313 (1975)

    Article  ADS  Google Scholar 

  51. C.D.H. Williams, P.C. Hendry, P.V.E. McClintock, Phys. Rev. Lett. 60, 865 (1988)

    Article  ADS  Google Scholar 

  52. C.M. Muirhead, W.F. Vinen, R.J. Donnelly, Phil. Trans. Roy. Soc. A 311, 433 (1984)

    Article  ADS  Google Scholar 

  53. D. Rosenberg, G.K. Wehner, J. Appl. Phys. 33, 1842 (1962)

    Article  ADS  Google Scholar 

  54. K. Ikuse, S. Yoshimura, K. Hine, M. Kiuchi, J. Phys. D 42, 135203 (2009)

    Article  ADS  Google Scholar 

  55. B. Brehm, M.A. Gusinow, J.L. Hall, Phys. Rev. Lett. 19, 737 (1967)

    Article  ADS  Google Scholar 

  56. P. Kristensen, U.V. Pedersen, V.V. Petrunin, T. Andersen, K.T. Chung, Phys. Rev. A 55, 978 (1997)

    Article  ADS  Google Scholar 

  57. A.V. Bunge, C.F. Bunge, Phys. Rev. A 30, 2179 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  58. D.L. Mader, R. Novick, Phys. Rev. Lett. 29, 199 (1972)

    Article  ADS  Google Scholar 

  59. L.M. Blau, R. Novick, D. Weinflash, Phys. Rev. Lett. 24, 1268 (1970)

    Article  ADS  Google Scholar 

  60. Y.K. Bae, M.J. Coggiola, J.R. Peterson, Phys. Rev. Lett. 52, 747 (1984)

    Article  ADS  Google Scholar 

  61. T.J. Kvale, R.N. Compton, G.D. Alton, J.S. Thompson, D.J. Pegg, Phys. Rev. Lett. 56, 592 (1986)

    Article  ADS  Google Scholar 

  62. T. Andersen, L.H. Andersen, N. Bjerre, P. Hvelpund, J.H. Posthumus, J. Phys. B 27, 1135 (1994)

    Article  ADS  Google Scholar 

  63. M.J. Druyvesteyn, F.M. Penning, Rev. Mod. Phys. 12, 88 (1940)

    Article  ADS  Google Scholar 

  64. D.E. Golden, H.W. Bandel, Phys. Rev. 138, A14 (1965)

    Article  ADS  Google Scholar 

  65. J.M. Marin, J. Boronat, J. Casulleras, Phys. Rev. B 71, 144518 (2005)

    Article  ADS  Google Scholar 

  66. L.B. Lurio, T.A. Rabedeau, P.S. Pershan, I.F. Silvera, M. Deutsch, S.D. Kosowsky, B.M. Ocko, Phys. Rev. B 48, 9644 (1993)

    Article  ADS  Google Scholar 

  67. B.M. Ocko, Phys. Rev. B 48, 9644 (1993)

    Article  ADS  Google Scholar 

  68. L.D. Landau, I.M. Lifschitz, Quantum Mechanics (Pergamon, Oxford, 1965), p. 79

    MATH  Google Scholar 

  69. C.M. Bender, D.C. Brodie, B.K. Meister, Proc. Roy. Soc. Lond. A 461, 733 (2005)

    Article  ADS  MATH  Google Scholar 

  70. T. Miyakawa, D.L. Dexter, Phys. Rev. A 1, 513 (1970)

    Article  ADS  Google Scholar 

  71. D. Mateo, M. Pi, M. Barranco, Phys. Rev. B 81, 174510 (2010)

    Article  ADS  Google Scholar 

  72. D. Mateo, D. Jin, M. Barranco, M. Pi, J. Chem. Phys. 134, 044507 (2011)

    Article  ADS  Google Scholar 

  73. V. Elser, J. Low Temp. Phys. 123, 7 (2001)

    Article  ADS  Google Scholar 

  74. V. Elser, unpublished. This is described in ref. 6

  75. D.D. Awschalom, K.W. Schwarz, Phys. Rev. Lett. 52, 49 (1984)

    Article  ADS  Google Scholar 

  76. C.S.M. Doake, P.W.F. Gribbon, J. Phys. C 5, 2998 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank many colleagues for discussion on the topics presented in this paper. Especial thanks to M. Barranco, A. Ghosh, W. Guo, G.S. Guralnik, D. Jin, A. Vilesov, and G.A. Williams. This work was supported in part by the National Science Foundation under Grant No. DMR 0965728.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Maris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Xie, Z., Cooper, L.N. et al. Study of Exotic Ions in Superfluid Helium and the Possible Fission of the Electron Wave Function. J Low Temp Phys 178, 78–117 (2015). https://doi.org/10.1007/s10909-014-1224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1224-3

Keywords

Navigation