Skip to main content
Log in

Josephson Oscillations and Self-Trapping of Superfluid Fermions in a Double-Well Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the behaviour of a two-component Fermi superfluid in a double-well potential. We numerically solve the time dependent Bogoliubov-de Gennes equations and characterize the regimes of Josephson oscillations and self-trapping for different potential barriers and initial conditions. In the weak link limit the results agree with a two-mode model where the relative population and the phase difference between the two wells obey coupled nonlinear Josephson equations. A more complex dynamics is predicted for large amplitude oscillations and large tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Here the notation is the same as in Ref. [16] except for the meaning of \(N\) which, in the present work, is the number of fermionic atoms, while in [16] is the number of bosonic dimers. In the context of NLSE the two numbers differ only by a factor two.

References

  1. B.D. Josephson, Phys. Lett. 1, 251 (1962)

    Article  MATH  ADS  Google Scholar 

  2. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  3. A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  Google Scholar 

  4. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford Science Publications, Oxford, 2003)

    MATH  Google Scholar 

  5. R. Gati, M.K. Oberthaler, J. Phys. B 40, R61 (2007)

    Article  ADS  Google Scholar 

  6. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  7. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999)

    Article  ADS  Google Scholar 

  8. E.A. Ostrovskaya, Y.S. Kivshar, M. Lisak, B. Hall, F. Cattani, D. Anderson, Phys. Rev. A 61, 031601R (2000)

    Article  ADS  Google Scholar 

  9. D. Ananikian, T. Bergeman, Phys. Rev. A 73, 013604 (2006)

    Article  ADS  Google Scholar 

  10. F.S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, M. Inguscio, Science 293, 843 (2001)

    Article  ADS  Google Scholar 

  11. Th Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, M.K. Oberthaler. Phys. Rev. Lett. 94, 020403 (2005)

  12. M. Albiez, R. Gati, J. Foelling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  13. T. Zibold, E. Nicklas, Ch. Gross, M.K. Oberthaler, Phys. Rev. Lett. 105, 204101 (2010)

    Article  ADS  Google Scholar 

  14. S. Levy, E. Lahoud, I. Shomroni, J. Steinhauer, Nature 449, 579 (2007)

    Article  ADS  Google Scholar 

  15. L.J. LeBlanc, A.B. Bardon, J. McKeever, M.H.T. Extavour, D. Jervis, J.H. Thywissen, F. Piazza, A. Smerzi, Phys. Rev. Lett. 106, 025302 (2011)

    Article  ADS  Google Scholar 

  16. P. Pieri, G.C. Strinati, Phys. Rev. Lett. 91, 030401 (2003)

    Article  ADS  Google Scholar 

  17. A. Spuntarelli, P. Pieri, G.C. Strinati, Phys. Rev. Lett. 99, 040401 (2007)

    Article  ADS  Google Scholar 

  18. A. Spuntarelli, P. Pieri, G.C. Strinati, Phys. Rep. 488, 111 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. F. Ancilotto, L. Salasnich, F. Toigo, Phys. Rev. A 79, 033627 (2009)

    Article  ADS  Google Scholar 

  20. L. Salasnich, N. Manini, F. Toigo, Phys. Rev. A 77, 043609 (2008)

    Article  ADS  Google Scholar 

  21. L. Salasnich, F. Ancilotto, N. Manini, F. Toigo, Laser Phys. 19, 636 (2009)

    Article  ADS  Google Scholar 

  22. S.K. Adhikari, H. Lu, H. Pu, Phys. Rev. A 80, 063607 (2009)

  23. G. Watanabe, F. Dalfovo, F. Piazza, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 80, 053602 (2009)

    Article  ADS  Google Scholar 

  24. S. Giorgini, L. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  25. P.G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966)

    MATH  Google Scholar 

  26. A.J. Leggett, Modern Trends in the Theory of Condensed Matter, ed by A Pekalski, R, Przystawa (Springer-Verlag, Berlin, 1980)

  27. M. Randeria, Bose Einstein Condensation, ed by A. Griffin, D. Snoke, S. Stringari (Cambridge, Cambridge, England, 1995)

  28. K.J. Challis, R.J. Ballagh, C.W. Gardiner, Phys. Rev. Lett. 98, 093002 (2007)

    Article  ADS  Google Scholar 

  29. R.G. Scott, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 106, 185301 (2011)

    Article  ADS  Google Scholar 

  30. A. Bulgac, Y. Yu, Phys. Rev. Lett. 88, 042504 (2002)

  31. M. McNeil Forbes, R. Sharma, arXiv:1308.4387

  32. R. Combescot, M.Y. Kagan, S. Stringari, Phys. Rev. A 74, 042717 (2006)

  33. M. Antezza, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 76, 043610 (2007)

    Article  ADS  Google Scholar 

  34. R. Liao, J. Brand, Phys. Rev. A 83, 041604(R) (2011)

    Article  ADS  Google Scholar 

  35. F. Piazza, L.A. Collins, A. Smerzi, Phys. Rev. A 81, 033613 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank S. Stringari, L.P. Pitaevskii, A. Recati for fruitful discussions. P.Z is particularly indebted to R.G.Scott, whose computational expertise was of great help at the beginning of this work. Support of ERC, through the QGBE Grant, and of Provincia Autonoma di Trento is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zou.

Appendix: Calculation of the Energy Difference \(\Delta E\)

Appendix: Calculation of the Energy Difference \(\Delta E\)

In this appendix we provide some details about the calculations of the energy difference, \(\Delta E=E^--E^+\), where \(E^+\) is the energy of the (symmetric) ground state of the gas and \(E^-\) is the energy of the lowest anti-symmetric state with the same number of particles \(N\) in the box. Here symmetric and anti-symmetric refer to spatial reflection in the \(x\)-direction around \(x=0k_F^{-1}\). The anti-symmetric state corresponds to the solutions of Eq. (1) exhibiting a \(\pi \) phase jump in the order parameter \(\Delta \) when crossing the center of the box. For weakly coupled superfluids the quantity \(\Delta E\) is directly related to the Josephson tunnelling energy, \(E_J\) as already seen in Sect. 4.

Fig. 12
figure 12

Energy difference \(\Delta E=E^--E^+\), divided by the area \(L_\perp ^2\), as a function of the barrier height \(V_0\) and width \(d\). Here \(N=156\), \(L_{\perp }=13k_{F}^{-1}\), \(L=30k_{F}^{-1}\), and \(E_\mathrm{cut}=70E_{F}\) (Color figure online)

Fig. 13
figure 13

Left energy difference \(\Delta E=E^--E^+\), divided by the area \(L_\perp ^2\), as a function of the barrier height \(V_0\) for different widths \(d\). Right the same quantity as a function of the barrier width \(d\) for different values of height \(V_0\). All the other parameters are the same as in the previous figure (Color figure online)

Since the quantity \(\Delta E\) is typically much smaller than the energies \(E^-\) and \(E^+\), we must take care of all possible sources of numerical inaccuracy, in particular those introduced by the finite cutoff energy and the finite box. We have first checked that, at unitarity, without barrier and in the limit of large \(L\), the energy \(E^+\) converges to the energy of a uniform infinite gas: \((E^+/N)= (3/5)\mu = (3/5)(1+\beta )E_F= 0.354 E_F\), where \(\beta =-0.41\) is the value of the Bertsch parameter in BdG theory [24]. In the same situation, the quantity \(\Delta E\) measures the cost in energy associated to creation of the density depletion and the nodal structure of the order parameter at the box center, corresponding to a dark soliton [33]. The energy per unit surface of a planar dark soliton at unitarity is \(\epsilon _s=\Delta E/ (E_F k_F^2 L_\perp ^2)\) and BdG theory gives \(\epsilon _s=(1+\beta )^{1/2}/(8\pi \sqrt{3}) \simeq 0.0176\) [34]. We have checked that both analytic values are reproduced within an accuracy of about \(2\) %, which is enough for our purposes.

Our results for \(\Delta E\) as a function of \(V_0\) and \(d\) are shown in Figs. 12 and 13. All results in these figures are obtained by using \(N=156\), \(L_{\perp }=13k_{F}^{-1}\), \(L=30k_{F}^{-1}\), and \(E_\mathrm{cut}=70E_{F}\). As expected, \(\Delta E\) approaches the same value in the limit of vanishingly small barrier (i.e, for \(V_0 \rightarrow 0\) at finite \(d\)). This value is \(\Delta E/(k_F^2L_\perp ^2E_F)\simeq 0.0185\), which is slightly larger than the energy of dark soliton in an infinite system, due to the finite box sixe. For \(d\) of the order of \(k_F^{-1}\), the quantity \(\Delta E\) is rapidly decreasing when \(V_0\) increases. The case of large barriers and small tunnelling (weak link) is where the physics of the Josephson effect is expected to manifest.

Finally we note that for \(V_0\) much smaller than \(E_F\) the quantity \(\Delta E\) tends to be a constant value when \(d \rightarrow \infty \). A simple explanation of this behavior is obtained by considering that, for a very wide and low barrier, the effect of the barrier is that of lowering the “bulk” density in the central region of the box. If \(d\) is larger that the soliton width, which is of the order of a few \(k_F^{-1}\), this effect can be accounted for by calculating the energy of a dark soliton in uniform gas of reduced density. Further increasing the width of the barrier has no effects on the soliton energy and hence \(\Delta E\) remains constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, P., Dalfovo, F. Josephson Oscillations and Self-Trapping of Superfluid Fermions in a Double-Well Potential. J Low Temp Phys 177, 240–256 (2014). https://doi.org/10.1007/s10909-014-1209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1209-2

Keywords

Navigation