Skip to main content
Log in

Anomalous Tunneling Systems in Amorphous Organic Materials

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We compare the heat release data of organic glasses with that of amorphous and glass-like crystalline solids. Anomalous behavior was found in all these materials, which disagrees with the standard tunneling model. We can explain most of the experimental observations within a phenomenological model, where we assume that for a part of tunneling systems the barrier heights are strongly reduced as a consequence of the local stress produced during the cooling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\alpha \) :

The thermal expansion coefficient

\(\Gamma \) :

Grüneisen parameter

\(\gamma _{l,t}\) :

\(\simeq \partial \Delta / 2 \partial u_{ik}\): Effective deformation potential for longitudinal or transversal phonons

\(\Delta _0\) :

The tunneling energy

\(\kappa _T\) :

Isothermal compressibility

\(\lambda \) :

The Gamow parameter

\(\rho \) :

Mass density

\(\sigma \) :

Mechanical stress

\(\tau _0\) :

Pre-exponential factor in the Arrhenius law

\(\tau _a\) :

Relaxation time of tunneling systems due to phonon-assisted interaction for anomalous TLSs

\(\tau _t\) :

Relaxation time of tunneling systems due to phonon-assisted interaction

\(\tau _{ta}\) :

Thermally activated relaxation time of TLSs

\(\tau ^{min}\) :

Minimum relaxation time of TLSs

\(A\) :

A parameter proportional to \(\gamma ^2/\rho \upsilon ^5 \hbar ^4\) with dimensions J\(^{-3}\) s\(^{-1}\)

\(C_p\) :

The specific heat at constant pressure

\(D\) :

Deformation potential of TLSs

\(E_0\) :

The zero-point energy

\(E_{av}\) :

Average energy of TLSs causing the heat release

\(m\) :

The mass

\(P_0\) :

Constant density of states of TLSs

\(P_a\) :

Constant density of states of anomalous TLSs

\(P_C\) :

Constant density of states deduced from the heat capacity

\(P_n\) :

Constant density of states of normal TLSs

\(P_Q\) :

Constant density of states deduced from the heat release

\(P_{a0}\) :

Constant density of states of anomalous TLSs deduced from the heat release long time measurement (\(t>\tau _a^{max}\))

\(P_{ax}\) :

A fit parameter of Eqs. (8) and (10)

\(R^*\) :

Cooling rate in heat release experiments

\(T^*\) :

Freezing temperature; below it and for typical cooling rates the TLSs remain in a non-equilibrium state and contribute to the heat release

\(T_0\) :

Measuring temperature in heat release experiments

\(T_1\) :

“Charging” temperature in heat release experiments

\(T_{co}\) :

Crossover temperature where the thermally activated relaxation time equals the tunneling relaxation time

\(T^*_a\) :

Freezing temperature for anomalous TLSs.

\(T^*_n\) :

Freezing temperature for normal TLSs.

\(Q_1\) :

A fit parameter of Eq. (10)

\(Q_a\) :

A fit parameter of Eq. (8)

\(Q_l\) :

A fit parameter of Eq. (6)

\(Q_n\) :

A fit parameter of Eq. (8)

\(Q_s\) :

A fit parameter of Eq. (6)

\(V\) :

Potential barrier height

\(V_{a}\) :

Potential barrier height of anomalous TLSs

\(V_m\) :

The average barrier height of the TLSs causing the heat release (is directly proportional to the freezing temperature)

\(V_s\) :

Volume of the sample

\(V_{ac}\) :

Activation volume

\(\upsilon _{l,t}\) :

The sound velocity

References

  1. S. Sahling, S. Abens, V.L. Katkov, V.A. Osipov, Phys. Rev. B 82, 174204 (2010)

    Article  ADS  Google Scholar 

  2. H. Eyring, J. Chem. Phys. 4, 283 (1936)

    Article  ADS  Google Scholar 

  3. R.N. Haward, R.J. Young, The Physics of Glassy Polymers. (London: Chapman and Hall, 1997)

  4. P.W. Anderson, B.I. Halperin, C.M. Varma, Phil. Mag. 25 (1972)

  5. W.A. Phillips, J. Low, Temp. Phys. 7, 351 (1972)

    Article  ADS  Google Scholar 

  6. D. Tielbürger, R. Mertz, R. Ehrenfels, S. Hunklinger, Phys. Rev. B 45, 2750 (1992)

    Article  ADS  Google Scholar 

  7. S. Sahling, S. Abens, T. Eggert, J. Low Temp. Phys. 127, 215 (2002)

    Article  ADS  Google Scholar 

  8. D.A. Parshin, S. Sahling, Phys. Rev. B 47, 5677 (1993)

    Article  ADS  Google Scholar 

  9. S. Abens, K. Topp, S. Sahling, R.O. Pohl, Czechoslov. J. Phys. 46, 2259 (1996)

    Article  Google Scholar 

  10. S. Sahling, A. Sahling, B.S. Neganov, M. Koláč, Solid State Commun 59, 643 (1986)

    Article  ADS  Google Scholar 

  11. S. Sahling, A. Sahling, M. Koláč, J. Low Temp. Phys. 73, 407 (1988)

    Article  ADS  Google Scholar 

  12. J. Zimmermann, G. Weber, Phys. Rev. Lett. 46, 661 (1981)

    Article  ADS  Google Scholar 

  13. J. Zimmermann, Cryogenics 24, 27 (1984)

    Article  ADS  Google Scholar 

  14. R.B. Stephens, Phys. Rev. B 8, 2896 (1973)

    Article  ADS  Google Scholar 

  15. A.L. Burin, Yu. Kagan, JETP 80, 761 (1995)

    ADS  Google Scholar 

  16. H. Maier, B.M. Kharlamov, D. Haarer, Phys. Rev. Lett. 76, 2085 (1996)

    Article  ADS  Google Scholar 

  17. S. Sahling, unpublished

  18. Nittke et al., J. Low Temp. Phys. 98, 517 (1995)

  19. P. Esquinazi (ed.), Tunneling Systems in Amorphous and Crystalline Solids (Springer, Berlin, 1998)

  20. M. Koláč, B.S. Neganov, A. Sahling, S. Sahling, J. Low Temp. Phys. 68, 285 (1987)

    Article  ADS  Google Scholar 

  21. M. Schwark, F. Pobell, M. Kubota, R.M. Mueller, J. Low Temp. Phys. 58, 171 (1985)

    Google Scholar 

  22. P. Doussineau, W. Schön, J. Physique 44, 373 (1983)

    Google Scholar 

  23. K. Topp Ph. D. (Cornell University 1996)

  24. E.I. Bunyatova, A. Sahling, S. Sahling, Solid State Commun. 75, 125 (1990)

    Article  ADS  Google Scholar 

  25. V.G. Karpov, JETP Lett. 55, 60 (1992)

    ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Heisenberg-Landau Program under Grant No. HLP-2013-26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Katkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahling, S., Koláč, M., Katkov, V.L. et al. Anomalous Tunneling Systems in Amorphous Organic Materials. J Low Temp Phys 176, 64–81 (2014). https://doi.org/10.1007/s10909-014-1162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1162-0

Keywords

Navigation