Skip to main content
Log in

Fungus Exposed Solenopsis invicta Ants Benefit from Grooming

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

We investigated aspects of resistance to entomopathogenic fungi in the social insect Solenopsis invicta, the red imported fire ant (RIFA). RIFA reared individually were significantly more susceptible to the entomopathogenic fungi Metarhizium anisopliae var. anisopliae M09 than reared in groups. Fungus exposed ants performed more self-grooming behavior when isolated as individuals and received more allo-grooming when accompanied with four healthy nestmates. Using fluorescence microscopy, we counted the number of fluorescein isothiocyanate (FITC)-labeled conidia on the cuticle of fungus exposed ants reared individually or as groups. The number of conidia on the surface of grouped ants decreased more rapidly than on isolated individuals. Allo-grooming behavior appears to be important in removing the conidia on the surface of RIFA. Individuals help fungus exposed ants by performing intensive grooming behaviors, which either risk infecting themselves or get them immunized as social immunity. We show evidence that contacting with fungus exposed ants would decrease susceptibility of nestmates to the fungus. All these results indicate that RIFA benefit from grooming behavior to fight against the fungal pathogens. Future advances in biological control of RIFA with entomopathogenic fungi are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baracchi D, Turillazzi S (2010) Differences in venom and cuticular peptides in individuals of Apis mellifera (Hymenoptera: Apidae) determined by MALDI-TOF MS. J Insect Physiol 56:366–375

    Article  CAS  PubMed  Google Scholar 

  • Baracchi D, Francese S, Turillazzi S (2011) Beyond the antipredatory defence: honey bee venom function as a component of social immunity. Toxicon 58:550–557

    Article  CAS  PubMed  Google Scholar 

  • Baracchi D, Fadda A, Turillazzi S (2012a) Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J Insect Physiol 58:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Baracchi D, Mazza G, Turillazzi S (2012b) From individual to collective immunity: the role of the venom as antimicrobial agent in the Stenogastrinae wasp societies. J Insect Physiol 58:188–193

    Article  CAS  PubMed  Google Scholar 

  • Bos N, Lefèvre T, Jensen A, d’Ettorre P (2012) Sick ants become unsociable. J Evol Biol 25:342–351

    Article  CAS  PubMed  Google Scholar 

  • Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc R Soc Lond B Biol Sci 274:2013–2017

    Article  Google Scholar 

  • Christe P, Oppliger A, Bancala F, Castella G, Chapuisat M (2003) Evidence for collective medication in ants. Ecol Lett 6:19–22

    Article  Google Scholar 

  • Cremer S, Armitage SA, Schmid-Hempel P (2007) Social immunity. Curr Biol 7:693–702

    Article  Google Scholar 

  • Driver F, Milner RJ, Trueman JW (2000) A taxonomic revision of based on a phylogenetic analysis of rDNA sequence data. Mycol Res 104:134–150

    Article  CAS  Google Scholar 

  • Hamilton C, Lejeune BT, Rosengaus RB (2011) Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biol Lett 7:89–92

    Article  PubMed Central  PubMed  Google Scholar 

  • Heinze J, Walter B (2010) Moribund ants leave their nests to die in social isolation. Curr Biol 20:249–252

    Article  CAS  PubMed  Google Scholar 

  • Hughes WO, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc Lond B Biol Sci 269:1811–1819

    Article  Google Scholar 

  • Hung SY, Boucias D (1992) Influence of Beauveria bassiana on the cellular defense response of the beet armyworm, Spodoptera exigua. J Invertebr Pathol 60:152–158

    Article  Google Scholar 

  • Konrad M, Vyleta ML, Theis FJ, Stock M, Tragust S, Klatt M, Drescher V, Marr C, Ugelvig LV, Cremer S (2012) Social transfer of pathogenic fungus promotes active immunization in ant colonies. PLoS Biol 10:e1001300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lacey LA (1997) Manual of techniques in insect pathology. Academic, San Diego

    Google Scholar 

  • Mburu D, Ochola L, Maniania N, Njagi P, Gitonga L, Ndung’u M, Wanjoya A, Hassanali A (2009) Relationship between virulence and repellency of entomopathogenic isolates of Metarhizium anisoplia and Beauveria bassiana to the termite Macrotermes michaelseni. J Insect Physiol 55:774–780

    Article  CAS  PubMed  Google Scholar 

  • Morrison LW, Porter SD, Daniels E, Korzukhin MD (2004) Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions 6:183–191

    Article  Google Scholar 

  • Oi DH, Pereira RM (1993) Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Fla Entomol 76:63–74

    Article  Google Scholar 

  • Okuno M, Tsuji K, Sato H, Fujisaki K (2012) Plasticity of grooming behavior against entomopathogenic fungus Metarhizium anisopliae in the ant Lasius japonicus. J Ethol 30:23–27

    Article  Google Scholar 

  • Pereira RM, Stimac JL (1992) Transmission of Beauveria bassiana within nests of Solenopsis invicta (Hymenoptera: Formicidae) in the laboratory. Environ Entomol 21:1427–1432

    Google Scholar 

  • Reber A, Chapuisat M (2012) No evidence for immune priming in ants exposed to a fungal pathogen. PLoS One 7:e35372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reber A, Purcell J, Buechel S, Buri P, Chapuisat M (2011) The expression and impact of antifungal grooming in ants. J Evol Biol 24:954–964

    Article  CAS  PubMed  Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JF (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134

    Article  Google Scholar 

  • Rosengaus RB, Cornelisse T, Guschanski K, Traniello JF (2007) Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94:25–33

    Article  CAS  PubMed  Google Scholar 

  • Rosengaus RB, Traniello JF, Bulmer MS (2011) Ecology, behavior and evolution of disease resistance in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, pp 165–191

  • Rust MK, Su NY (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375

    Article  CAS  PubMed  Google Scholar 

  • Sadd B, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16:1206–1210

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Simone FM, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311

    Article  Google Scholar 

  • Sumana A, Starks PT (2004) Grooming patterns in the primitively eusocial wasp Polistes dominulus. Ethology 110:825–833

    Article  Google Scholar 

  • Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S (2013) Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol 23:76–82

    Article  CAS  PubMed  Google Scholar 

  • Traniello JF, Rosengaus RB, Savoie K (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. PNAS 99:6838–6842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ugelvig LV, Cremer S (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Curr Biol 17:1967–1971

    Article  CAS  PubMed  Google Scholar 

  • Vanderwoude C, Elson-Harris M, Hargreaves J, Harris E, Plowman K (2003) An overview of the red imported fire ant (Solenopsis invicta Buren) eradication plan for Australia. Rec Aust Mus 7:11–16

    Google Scholar 

  • Vinson SB (1997) Invasion of the red imported fire ant (Hymenoptera: Formicidae): spread, biology, and impact. Am Entomol 43:23–39

    Google Scholar 

  • Walker TN, Hughes WO (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett 5:446–448

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams DF, Oi DH, Porter SD, Pereira RM, Briano JA (2003) Biological control of imported fire ants (Hymenoptera: Formicidae). Am Entomol 49:150–163

    Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Huang J, Zhou A, Zeng L (2012) Prevalence of Solenopsis invicta (Hymenoptera: Formicidae) Venom Allergic Reactions in Mainland China. Fla Entomol 95:961–965

    Article  Google Scholar 

  • Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52:75–85

    Article  Google Scholar 

  • Yanagawa A, Yokohari F, Shimizu S (2008) Defense mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J Invertebr Pathol 97:165–170

    Article  PubMed  Google Scholar 

  • Yanagawa A, Yokohari F, Shimizu S (2010) Influence of fungal odor on grooming behavior of the termite, Coptotermes formosanus. J Insect Sci 10:1–10

    Article  Google Scholar 

  • Zhang R, Li Y, Liu N, Porter SD (2007) An overview of the red imported fire ant (Hymenoptera: Formicidae) in mainland China. Fla Entomol 90:723–731

    Article  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers and Meron P. Zalucki for valuable edit and comments on this manuscript. We also thank D.S. Wang for help in analyzing the data. This research was financially supported by International Science & Technology Cooperation Program of China (N0. 2011DFB30040), Science & Technology Planning Program of Guangdong Province, China (2011B031500020) and Science & Technology Planning Program of Guangzhou City, Guangdong Province, China (2013J4500032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-rong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Hl., Lu, Lh., Shi, Qx. et al. Fungus Exposed Solenopsis invicta Ants Benefit from Grooming. J Insect Behav 27, 678–691 (2014). https://doi.org/10.1007/s10905-014-9459-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-014-9459-z

Keywords

Navigation