Skip to main content
Log in

Behavioral Response of the Leaf-Cutting Ant Atta cephalotes (Hymenoptera: Formicidae) to Trichoderma sp.

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Species of the genus Trichoderma sp. are used to control leaf-cutting ants. However, knowledge about the collective immune responses of ants against this antagonist is scarce. Therefore, this study assessed the frequency of hygienic behaviors deployed by medium workers of Atta cephalotes. For this purpose, suspensions of Trichoderma sp. spores were sprayed on sub-colonies composed of workers and a portion of the mutualist. As a control, the sub-colonies were sprayed with water. Independent of whether the workers were treated with spores of Trichoderma sp. or water, they increased the frequency of self-grooming while reducing the frequency of fungus grooming. These findings suggest that medium workers prioritize the removal of contaminants from their bodies over the interaction with the mutualist, possibly to avoid further contamination in the garden. In the field, this strategy may minimize the possibility that foraging ants exposed to contaminants from the exterior can transfer potentially hazardous materials to the nest where they can reach the garden, risking the colony’s productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data are available at https://osf.io/dsz7h/?view_only=5f69a62f9d2a4ab79d970ae8c94cbc2e.

Code Availability

Not applicable.

References

  • Abramowski D, Currie CR, Poulsen M (2011) Caste specialization in behavioral defenses against fungus garden parasites in Acromyrmex octospinosus leaf-cutting ants. Insect Soc 58:65–75

    Article  Google Scholar 

  • Amante E (1967) Prejuízos causados pela formiga saúva em plantações de Eucalyptus e Pinus no estado de São Paulo. Silvicultura em São Paulo 6:355–363

    Google Scholar 

  • Armbrecht I, Gallego-ropero MC, Montoya-lerma J, Montoya-Correa M (2012) Composting to control the leaf-cutting ant Atta cephalotes L. (Hymenoptera: Formicidae). Revista de Ciencias 16:47–56

    Article  Google Scholar 

  • Bass M, Cherrett JM (1994) The role of leaf-cutting ant workers (Hymenoptera: Formicidae) in fungus garden maintenance. Ecol Entomol 19:215–220

    Article  Google Scholar 

  • Bigi M, Torkomian V, Groote S, Hebling M, Bueno O et al (2004) Activity of the Ricinus communis (Euphorbiaceae) and ricinine to the leaf-cutting ants Atta sexdens rubropilosa Forel, 1908,(Hymenoptera, Formicidae) and to the symbiotic fungus Leucoagaricus gongylophorus (singer) Möller. Pest Manag Sci 60:933–938

    Article  CAS  PubMed  Google Scholar 

  • Bollazzi M, Roces F (2010) Control of nest water losses through building behavior in leaf-cutting ants (Acromyrmex heyeri). Insect Soc 57:267–273

    Article  Google Scholar 

  • Bonadies E, Wcislo WT, Gálvez D, Hughes WOH, Fernández-Marín H (2019) Hygiene defense behaviors used by a fungus-growing ant depend on the fungal pathogen stages. Insects 10. https://doi.org/10.3390/insects10050130

  • Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP et al (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67

    Article  CAS  Google Scholar 

  • Bueno OC, Hebling MJA, Silva OA, Matenhauer AMC (1995) Effect of sesame (Sesamum indicum L) on nest development of Atta sexdens rubropilosa Forel (Hym., Formicidae). J Appl Entomol 119:341–343

    Article  Google Scholar 

  • Cafaro MJ, Poulsen M, Little AEF, Price SL, Gerardo NM et al (2011) Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc Royal Soc B 278:1814–1822

    Article  Google Scholar 

  • Caffarini P, Carrizo P, Pelicano A, Roggero P, Pacheco J (2008) Efectos de extractos acetónicos y acuosos de Ricinus communis (ricino), Melia azedarach (paraíso) y Trichillia glauca (trichillia), sobre la hormiga negra común (Acromyrmex lundi). Idesia (Arica) 26:59–64

    Article  Google Scholar 

  • Cantarelli EB, Costa EC, Pezzutti RV, Zanetti R, Fleck MD (2019) Damage by Acromyrmex spp. to an initial Pinus taeda L. planting. Floresta e Ambient 26(4): e20160060

  • Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694

    Article  CAS  PubMed  Google Scholar 

  • Cremer S (2019) Social immunity in insects. Curr Biol 29:R458–R463

    Article  CAS  PubMed  Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702

    Article  CAS  PubMed  Google Scholar 

  • Currie CR (2001) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128:99–106

    Article  PubMed  Google Scholar 

  • Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc Biol Sci 268:1033–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie CR, Mueller UG, Malloch D (1999a) The agricultural pathology of ant fungus gardens. PNAS 96:7998–8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999b) Fungus-growing ants use antibiotic producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • da Silva Camargo R, Puccini C, Forti LC (2017) Allogrooming, self-grooming, and touching behavior: contamination routes of leaf-cutting ant workers using a fat-soluble tracer dye. Insects 8. https://doi.org/10.3390/insects8020059

  • Daza FFF, Roman GR, Rodriguez MV, Vargas IAG, Heano HC et al (2019) Spores of Beauveria bassiana and Trichoderma lignorum as a bioinsecticide for the control of Atta cephalotes. Biol Res 52. https://doi.org/10.1186/s40659-019-0259-y

  • Della Lucia TM, Gandra LC, Guedes RN (2014) Managing leaf-cutting ants: peculiarities, trends and challenges. Pest Manag Sci 70:14–23

    Article  CAS  PubMed  Google Scholar 

  • Duarte APM, Attili-Angelis D, Baron NC, Groenewald JZ, Crous PW et al (2017) Riding with the ants. Pers: Mol Phylogeny Evol Fungi 38:81–99

    CAS  Google Scholar 

  • Farji-Brener AG, Werenkraut V (2017) The effects of ant nests on soil fertility and plant performance: a meta-analysis. J Anim Ecol 86:866–877

    Article  PubMed  Google Scholar 

  • Farji-Brener AG, Elizalde L, Fernández-Marín H, Amador-Vargas S (2016) Social life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants. Proc R Soc B Biol Sci 283:20160625

    Article  CAS  Google Scholar 

  • Fefferman NH, Traniello JFA, Rosengaus RB, Calleri DV (2007) Disease prevention and resistance in social insects: modeling the survival consequences of immunity, hygienic behavior, and colony organization. Behav Ecol Sociobiol 61:565–577

    Article  Google Scholar 

  • Fernandez F, Castro-Huertas V, Serna F (2015) Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Bogotá

    Google Scholar 

  • Fernandez-Bou AS, Dierick D, Swanson AC, Allen MF, Alvarado AGF et al (2019) The role of the ecosystem engineer, the leaf-cutter ant Atta cephalotes, on soil CO2 dynamics in a wet tropical rainforest. J Geophys Res Biogeosci 124:260–273

    Article  CAS  Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Wcislo WT (2003) Nest-founding in Acromyrmex octospinosus (Hymenoptera, Formicidae, Attini): demography and putative prophylactic behaviors. Insect Soc 50:304–308

    Article  Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc Royal Soc B 273:1689–1695

    Article  Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT (2009) Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc Royal Soc B 276:2263–2269

    Article  Google Scholar 

  • Fernández-Marín H, Bruner G, Gomez EB, Nash DR, Boomsma JJ et al (2013) Dynamic disease management in Trachymyrmex fungus-growing ants (Attini: Formicidae). Am Nat 181:572–582

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Ganassi S, Moretti A, Stornelli C, Fratello B, Bonvicini Pagliai AM et al (2001) Effect of fusarium, Paecilomyces and Trichoderma formulations against aphid Schizaphis graminum. Mycopathologia 151:131–138

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species - Opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hart AG, Ratnieks FLW (2001) Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant Atta cephalotes. Behav Ecol Sociobiol 49:387–392

  • Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Hughes WOH, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc Biol Sci 269:1811–1819

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleineidam C, Roces F (2000) Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insect Soc 47:241–248

    Article  Google Scholar 

  • Kubicek C, Harman GE (2014) Trichoderma and Gliocladium Volume 1 Basic biology, taxonomy and genetics. https://doi.org/10.1201/9781482295320

  • Little AEF, Murakami T, Mueller UG, Currie CR (2006) Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol Lett 2:12–16

    Article  PubMed  Google Scholar 

  • Lobo-Echeverri T, Galindo VM, Aubad P, Ortiz-Reyes A, Preciado LM et al (2020) Inhibition of Leucoagaricus gongylophorus with Carica papaya: an alternative to control the leaf-cutter ant Acromyrmex octospinosus. Int J Pest Manag 66:201–214

    Article  CAS  Google Scholar 

  • Löfstedt Gilljam J, Leonel J, Cousins IT, Benskin JP (2016) Is ongoing sulfluramid use in South America a significant source of perfluorooctanesulfonate (PFOS)? Production inventories, environmental fate, and local occurrence. Environ Sci Technol 50:653–659

    Article  PubMed  CAS  Google Scholar 

  • Lopez E, Orduz S (2003) Metarhizium anisopliae and Trichoderma viride for control of nests of the fungus-growing ant, Atta cephalotes. Biol Control 27:194–200

    Article  Google Scholar 

  • López E, Romero M, Ortiz A, Orduz S (1999) Primer registro de Metarhizium anisopliae infectando reinas de Atta cephalotes (Hymenoptera: Formicidae) en Colombia. Rev Colomb Entomol 25:49–56

    Article  Google Scholar 

  • Martin MM, Martin JS (1971) The presence of protease activity in the rectal fluid of primitive attine ants. J Insect Physiol 17:1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Martin MM, Gieselmann MJ, Martin JS (1973) Rectal enzymes of attine ants. α-amylase and chitinase. J Insect Physiol 19:1409–1416

    Article  CAS  Google Scholar 

  • Martin MM, Boyd ND, Gieselmann MJ, Silver RG (1975) Activity of faecal fluid of a leaf-cutting ant toward plant cell wall polysaccharides. J Insect Physiol 21:1887–1892

    Article  CAS  Google Scholar 

  • Masri L, Cremer S (2014) Individual and social immunisation in insects. Trends Immunol 35:471–482

    Article  CAS  PubMed  Google Scholar 

  • Mendonça DMF, Caixeta MCS, Martins GL, Moreira CC, Kloss TG et al (2021) Low virulence of the Fungi Escovopsis and Escovopsioides to a leaf-cutting ant-fungus Symbiosis. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.673445

  • Mina-Mejia SY, Rodríguez J, Montoya-Lerma J (2018) Euphorbia cotinifolia (Euphorbiaceae): a promising alternative for leaf cutting ant Atta cephalotes (Hymenoptera: Formicidae) control. Biocontrol Sci Tech 28:486–495

    Article  Google Scholar 

  • Montoya QV, Meirelles LA, Chaverri P, Rodrigues A (2016) Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Antonie Van Leeuwenhoek 109:633–651

    Article  PubMed  Google Scholar 

  • Montoya-Correa M, Montoya-Lerma J, Armbrecht I, Gallego-Ropero MC (2007) Cómo responde la hormiga cortadora de hojas Atta cephalotes (Hymenoptera: Myrmicinae) a la remoción mecánica de sus nidos. Bol Mus Entomol Univ Valle 8:1–8

    Google Scholar 

  • Montoya-Lerma J, Giraldo-Echeverri C, Armbrecht I, Farji-Brener A, Calle Z (2012) Leaf-cutting ants revisited: towards rational management and control. Int J Pest Manag 58:225–247

    Article  Google Scholar 

  • Morelos-Juárez C, Walker TN, Lopes JFS, Hughes WOH (2010) Ant farmers practice proactive personal hygiene to protect their fungus crop. Curr Biol 20:R553–R554

    Article  PubMed  CAS  Google Scholar 

  • Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76:169–197

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Article  Google Scholar 

  • Mueller UG, Scott JJ, Ishak HD, Cooper M, Rodrigues A (2010) Monoculture of leafcutter ant gardens. PLoS One 5:e12668. https://doi.org/10.1371/journal.pone.0012668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson-Møller S, Poulsen M, Innocent TM (2018) A visual guide for studying behavioral defenses to pathogen attacks in leaf-cutting ants. J Vis Exp:e58420. https://doi.org/10.3791/58420

  • Oliveira MA, Araújo MS, Marinho CGS, Ribeiro MMR, Della Lucia TMC (2011) Manejo de formigas-cortadeiras. In: Formigas-cortadeiras: da biologia ao manejo. Viçosa-MG: UFV, vol 1. UFV, Brasil, pp 400–419

  • Ortius-Lechner D, Maile R, Morgan ED, Boomsma JJ (2000) Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. J Chem Ecol 26:1667–1683

    Article  CAS  Google Scholar 

  • Ortiz A, Madrigal A, Orduz S (1999) Evaluación del comportamiento de las hormigas Atta cephalotes (Hymenoptera: Formicidae) frente a la contaminación del jardín del hongo con Trichoderma lignorum. Rev Colomb Entomol 25:169–177

    Article  Google Scholar 

  • Pagnocca FC, Rodrigues A, Nagamoto NS, Bacci M Jr (2008) Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Van Leeuwenhoek 94:517–526

    Article  PubMed  Google Scholar 

  • Perfecto I, Vandermeer J (1993) Distribution and turnover rate of a population of Atta cephalotes in a tropical rain forest in Costa Rica. Biotropica 25:316–321. https://doi.org/10.2307/2388789

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2017) {nlme}: Linear and nonlinear mixed effects models

  • Poulsen M, Bot ANM, Nielsen MG, Boomsma JJ (2002) Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav Ecol Sociobiol 52:151–157

    Article  Google Scholar 

  • Poulsen M, Cafaro MJ, Erhardt DP, Little AE, Gerardo NM et al (2010) Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2:534–540

    Article  CAS  PubMed  Google Scholar 

  • Precetti AACM, Nasato ACM, Beltrame GJ, Oliveira JE, Junior MP (1988) Perdas de produção em cana de açúcar, causadas pela saúva mata pasto, Atta bisphaerica. Boletim Técnico Corpesucar 42:25–30

    Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. Vienna, Austria. Retrieved from https://www.R-project.org/

  • Reber A, Purcell J, Buechel SD, Buri P, Chapuisat M (2011) The expression and impact of antifungal grooming in ants. J Evol Biol 24:954–964

    Article  CAS  PubMed  Google Scholar 

  • Richard FJ, Errard C (2009) Hygienic behavior, liquid-foraging, and trophallaxis in the leaf-cutting ants, Acromyrmex subterraneus and Acromyrmex octospinosus. J Insect Sci 9:1–9

    Article  PubMed  Google Scholar 

  • Rocha SL, Jorge VL, Della Lucia TMC, Barreto RW, Evans HC et al (2014) Quality control by leaf-cutting ants: evidence from communities of endophytic fungi in foraged and rejected vegetation. Arthropod Plant Interact 8:485–493

    Article  Google Scholar 

  • Rocha SL, Evans HC, Jorge VL, Cardoso LAO, Pereira FST et al (2017) Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy. R Soc Open Sci 4:160628. https://doi.org/10.1098/rsos.160628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues A, Pagnocca FC, Bacci M, Hebling MJA, Bueno OC et al (2005) Variability of non-mutualistic filamentous fungi associated with Atta sexdens rubropilosa nests. Folia Microbiol (Praha) 50:421

    Article  CAS  Google Scholar 

  • Rodrigues A, Carletti CD, Bueno OC, Pagnocca FC (2008) Leaf-cutting ant faecal fluid and mandibular gland secretion: effects on microfungi spore germination. Braz J Microbiol 39:64–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez J, Zoraida Calle D, Montoya-Lerma J (2008) Herbivoría de Atta cephalotes (Hymenoptera: Myrmicinae) sobre tres sustratos vegetales. Rev Colomb Entomol 34:156–162

    Article  Google Scholar 

  • Rodríguez J, Montoya-Lerma J, Calle Z (2015) Effect of Tithonia diversifolia mulch on Atta cephalotes (Hymenoptera: Formicidae) nests. J Insect Sci 15. https://doi.org/10.1093/jisesa/iev015

  • Schiøtt M, Rogowska-Wrzesinska A, Roepstorff P, Boomsma JJ (2010) Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol 8:156. https://doi.org/10.1186/1741-7007-8-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. In: Simpson SJ (ed) Advances in insect physiology, vol 32. Academic Press, Cambridge, pp 1–48

    Google Scholar 

  • Therneau T (2020). A package for survival analysis in R. R package version 3.3–1. https://CRAN.R-project.org/package=survival

  • Tsakas S, Marmaras VJ (2010) Insect immunity and its signalling: an overview. Invertebr Surviv J 7:228–238

    Google Scholar 

  • Ubaid ur Rahman H, Asghar W, Nazir W, Sandhu MA, Ahmed A et al (2021) A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ 755:142649. https://doi.org/10.1016/j.scitotenv.2020.142649

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Verza SS, Diniz EA, Chiarelli MF, Mussury RM, Bueno OC (2017) Waste of leaf-cutting ants: disposal, nest structure, and abiotic soil factors around internal waste chambers. Acta Ethol 20:119–126

    Article  Google Scholar 

  • Weber NA (1966) Fungus-Growing Ants. Science 153:587–604

    Article  CAS  PubMed  Google Scholar 

  • Wells RL, Murphy SK, Moran MD (2017) Habitat modification by the leaf-cutter ant, Atta cephalotes, and patterns of leaf-litter arthropod communities. Environ Entomol 46:1264–1274

    Article  PubMed  Google Scholar 

  • Weston DP, Lydy MJ (2014) Toxicity of the insecticide fipronil and its degradates to benthic macroinvertebrates of urban streams. Environ Sci Technol 48:1290–1297

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1983) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes. Behav Ecol Sociobiol 14:47–54

    Article  Google Scholar 

  • Yek SH, Nash DR, Jensen AB, Boomsma JJ (2012) Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc Royal Soc B 279:4215–4222. https://doi.org/10.1098/rspb.2012.1458

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Vicerrectoria de investigaciones of the Universidad del Valle for financial support through project grant number CI 71153. We thank Dr. Inge Armbrecht and the members of the Group on Ecology of Agroecosystems and Natural Habitats (GEAHNA). We are grateful to Andrea López Peña and the DAGMA-Cali team, especially Diana Ortiz and Elsy Alvear, for support throughout the development of this study.

Funding

This work was financed by Vicerrectoría de Investigaciones- Universidad del Valle grant number 53111: Defense strategies against bio-controlling fungi in leaf cutter ant A. cephalotes (Hymenoptera: Myrmicinae): synergism between individual and social immunity.

Author information

Authors and Affiliations

Authors

Contributions

Sandra Milena Valencia Giraldo, Andrea Niño-Castro and James Montoya-Lerma contributed to the study conception and design. Material preparation and data collection were performed by Karent Cotazo-Calambas and Juan Sebastián Gómez-Díaz. Data analysis was performed by Andrea Niño-Castro and Karent Cotazo-Calambas. Oversight and leadership were provided by Andrea Niño Castro and James Montoya-Lerma.

Corresponding author

Correspondence to Andrea Niño-Castro.

Ethics declarations

Ethics Approval

This study was carried out according to recommendations and permits approved by the Permiso Marco de Recolección granted to the Universidad del Valle (Resolución 1070 de la Autoridad Nacional de Licencias Ambientales). All the experimental procedures were approved by the Ethics Board on Research in Species of Fauna and Flora minute 004–2018, Universidad del Valle.

Consent to Participate

Not applicable.

Consent for Publication

All authors approved the final manuscript and approved its submission for publication.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotazo-Calambas, K.M., Niño-Castro, A., Valencia-Giraldo, S.M. et al. Behavioral Response of the Leaf-Cutting Ant Atta cephalotes (Hymenoptera: Formicidae) to Trichoderma sp.. J Insect Behav 35, 92–102 (2022). https://doi.org/10.1007/s10905-022-09800-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-022-09800-9

Keywords

Navigation