Skip to main content
Log in

The Physical and Antimicrobial Properties of Silver Doped Hydroxyapatite Sintered by Microwave and Conventional Sintering

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, the silver-doped hydroxyapatite (AgHAp) nanoparticles were successfully synthesized by conventional and microwave sintering. The structural and antibacterial properties of AgHAp without heat treatment (AgHAp-90) and after heat treated at 800 and 1000 °C by conventional (AgHAp-800CS, AgHAp-1000CS) and microwave sintering (AgHAp-800MS, AgHAp-1000MS) were discussed respectively. The results of X-ray diffraction and fourier transform infrared spectroscopy suggested that the pure phase of AgHAp nanoparticles were obtained at 800 °C, but the β-TCP phase was observed when the temperature up to 1000 °C. Scanning electron microscopy images showed that the morphology and size of the nanoparticles changed with the improvement of temperature. The energy dispersive X-ray analysis identified the existence of Ag, Ca, P. The antibacterial test of AgHAp showed the excellent antimicrobial activity against gram-negative strains Escherichia coli and gram-positive strains Staphylococcus aureus. Also, the results showed the AgHAp had a smaller effect on gram-positive strains compare with gram-negative strains, and the antimicrobial activity of particles sintered by microwave was better than samples sintered by conventional. It showed the great advantages of microwave sintering. The silver ion releasing in solution was measured by the inductively coupled plasma and elucidated the results of antibacterial tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Sygnatowicz, K. Keyshar, A. Tiwari, Biol. Biomed. Mater. 62, 65 (2010)

    CAS  Google Scholar 

  2. N. Rameshbabu, T.S.S. Kumar, T.G. Prabhakar, V.S. Sastry, K.V.G.K. Murty, K.P. Rao, J. Biomed. Mater. Res. A 80, 581 (2006)

    Google Scholar 

  3. K.S. Oh, K.J. Kim, Y.K. Jeong, Y.H. Choa, Key Eng. Mater. 42, 583 (2003)

    Article  Google Scholar 

  4. C.S. Ciobanu, S.L. Iconaru, M.C. Chifiriuc, A. Costescu, P.L. Coustumer, D. Predoi, Biomed. Res. Int. 2013, 1 (2013)

    Article  CAS  Google Scholar 

  5. W. Chen, Y. Liu, H.S. Courtney, M. Bettengaa, C.M. Agrawalc, J.D. Bumgardneret, J.L. Onga, Biomaterials 27, 5512 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. S. Samani, S.M. Hossainalipour, M. Tamizifar, H.R. Rezaie, J. Biomed. Mater. Res. A 101, 222 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. C.S. Ciobanu, S.L. Iconaru, I. Pasuk, B.S. Vasile, A.R. Lupu, A. Hermenean, A. Dinischiotu, D. Predoi, Mater. Sci. Eng. C 33, 1395 (2013)

    Article  CAS  Google Scholar 

  8. N. Iqbala, M.R.A. Kadir, N.H. Mahmood, N. Salim, G.R.A. Froemmingb, H.R. Balaji, T. Kamarul, Ceram. Int. 40, 4507 (2014)

    Article  CAS  Google Scholar 

  9. A. Costescu, C.S. Ciobanu, S.L. Iconaru, R.V. Ghita, C.M. Chifiriuc, L.G. Marutescu, D. Predoi, J. Nanomater. 2013, 1 (2013)

    Article  CAS  Google Scholar 

  10. G.S. Kumara, A. Thamizhavelb, Y. Yokogawa, S.N. Kalkurad, E.K. Girija, Mater. Chem. Phys. 134, 1127 (2012)

    Article  CAS  Google Scholar 

  11. E.S. Thian, T. Konishi, Y. Kawanobe, P.N. Lim, C. Choong, B. Ho, M. Aizawa, J. Mater. Sci. 24, 437 (2013)

    CAS  Google Scholar 

  12. S. Nath, S. Kalmodia, B. Basu, J. Mater. Sci. 21, 1273 (2010)

    CAS  Google Scholar 

  13. M. Šupová, Ceram. Int. 41, 9203 (2015)

    Article  CAS  Google Scholar 

  14. B. Singh, A.K. Dubey, S. Kumar, N. Saha, Mater. Sci. Eng. 31, 1320 (2011)

    Article  CAS  Google Scholar 

  15. T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen, F.Z. Cui, J. Mater. Sci. 9, 129 (1998)

    Google Scholar 

  16. S.X. Yang, Y.H. Zhang, J.M. Yu, Z.C. Zhen, T.Z. Huang, Q. Tang, P.K. Chu, L. Qi, H. Lv, Mater. Des. 59, 461 (2014)

    Article  CAS  Google Scholar 

  17. A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, G. Gusmano, J. Therm. Anal. Calorim. 88, 237 (2007)

    Article  CAS  Google Scholar 

  18. M.R. Towler, I.R. Gibson, J. Mater, Sci. Lett. 20, 1719 (2001)

    Article  CAS  Google Scholar 

  19. A. Afshar, M. Ghorbani, N. Ehsani, M.R. Saeri, C.C. Sorrell, Mater. Des. 24, 197 (2003)

    Article  CAS  Google Scholar 

  20. K.A. Rapacz, C. Paluszkiewicz, A. Slosarczyk, Z. Paszkiewicz, J. Mol. Struct. 744, 653 (2005)

    Article  CAS  Google Scholar 

  21. Y. Zhang, S.L. Zhong, M.S. Zhang, Y.C. Lin, J. Mater. Sci. 44, 457 (2009)

    Article  CAS  Google Scholar 

  22. A. Dubnika, D. Loca, I. Salma, A. Reinis, L. Poca, L.B. Cimdina, J. Mater. Sci. 25, 435 (2014)

    CAS  Google Scholar 

  23. A.G. Nazari, A. Tahari, F. Moztarzadeh, M. Mozafari, M.E. Bahrololoom, Micro Nano Lett. 6, 713 (2011)

    Article  CAS  Google Scholar 

  24. S.C. Ciobanu, F. Massuyeau, L.V Constantin, D. Predoi, Nanoscale Res. Lett. 6, 613 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  25. N. Iqbala, M.R.A. Kadira, N.A.N. Malek, N.H.B. Mahmooda, M.R. Muralic, T. Kamarul, Mater. Res. Bull. 48, 3172 (2013)

    Article  CAS  Google Scholar 

  26. S. Jadalannagari, K. Deshmukh, S.R. Ramanan, M. Kowshik, Appl. NanoSci. 4, 133 (2014)

    Article  CAS  Google Scholar 

  27. C.L. Popa, C.S. Ciobanu, G. Voicu, E. Vasile, M.C. Chifiriuc, S.L. Iconaru, D. Predoi, Nanoscale Res. Lett. 10, 492 (2015)

    Article  CAS  Google Scholar 

  28. A. Dubnika, D. Loca, A. Reinis, M. Kodols, C.L. Berzina, Pure Appl. Chem. 85, 453 (2013)

    Article  CAS  Google Scholar 

  29. D.J. Curran, T.J. Fleming, M.R. Towler, S. Hampshire, J. Mater. Sci. 21, 1109 (2010)

    CAS  Google Scholar 

  30. R.M. Anklekar, D.K. Agrawal, R. Roy, Powder Metall. 44, 355 (2001)

    Article  CAS  Google Scholar 

  31. V. Stanic, D. Janackovic, S. Dimitrijevic, S.B. Tanaskovic, M. Mitric, M.S. Pavlovic, A. Krstic, D. Jovanovic, S. Raicevic, Appl. Surf. Sci. 257, 4510 (2011)

    Article  CAS  Google Scholar 

  32. P.N. Lim, E.Y. Teo, B. Ho, B.Y. Tay, E.S. Thian, J. Biomed. Mater. Res. 101, 2456 (2013)

    Article  Google Scholar 

  33. R. Nirmala, F.A. Sheikh, M.A. Kanjwal, J.H. Lee, S.J. Park, R. Navamathavan, H.Y. Kim, J. Nanopart. Res. 13, 1917 (2011)

    Article  CAS  Google Scholar 

  34. W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, J.L. Ong, Biomaterials 5512, 27 (2006)

    Google Scholar 

  35. Q.L. Feng, J. Wu, G.Q. Chen, F. Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mater. Res. A 52, 662 (2000)

    Article  CAS  Google Scholar 

  36. C. Piccirillo, R.C. Pullar, D. M. Tobaldi, C.P.M.L. Lima, M.M.E. Pintado, Ceram. Int. 10152, 41 (2015)

    Google Scholar 

  37. A. Yoshiki, M. Hiroshi, N. Iwao, S. Nobuko, A. Tomonori, Y. Yutaka, S. Takafumi, M. Masaki, M. Masaaki, H. Takao, Mater. Sci. Eng. 30, 175 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grand science and technology special project of Zhongshan city of China (No. 2014A2FC222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Zhou, J., Liu, G. et al. The Physical and Antimicrobial Properties of Silver Doped Hydroxyapatite Sintered by Microwave and Conventional Sintering. J Inorg Organomet Polym 27, 955–961 (2017). https://doi.org/10.1007/s10904-017-0542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0542-8

Keywords

Navigation