Skip to main content
Log in

RETRACTED ARTICLE: Morphological and Field Emission Properties of ZnO Deposited MWCNT by RF Sputtering and PECVD

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

This article was retracted on 08 September 2017

This article has been updated

Abstract

We have reviewed the synthesis of nanocomposite zinc oxide deposited carbon nanotube with two different methods. Initially the multi-walled carbon nanotubes (MWCNT) were prepared by the plasma enhanced chemical vapour deposition technique. Then By two different methods ZnO layers were coated on the tubes. RF sputtering was one of the ways to directly deposit ZnO thin layer on the MWCNTs. On the other hand, we used the thermally physical vapour deposition for making thin Zn film to oxidize it later. Scanning electron microscopy and also Raman spectroscopy measurements of the prepared samples confirmed the presence of ZnO nanolayers on the CNT bodies. By the field emission microscopy measurements we found that ZnO deposited CNTs have a more efficient emissivity than that of CNTs alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 08 September 2017

    An erratum to this article has been published.

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Matter. 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature (Lond.) 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  3. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes; Synthesis, Structure, Properties, and Applications (Springer, New York, 2001)

    Google Scholar 

  4. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  CAS  Google Scholar 

  5. I.C. Chen, L.H. Chen, X.R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102–153104 (2006)

    Article  Google Scholar 

  6. S.S. Wong, A.T. Woolley, E. Joselevich, C.M. Lieber, Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999)

    Article  CAS  Google Scholar 

  7. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  CAS  Google Scholar 

  8. Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308–3310 (1997)

    Article  CAS  Google Scholar 

  9. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1990)

    Article  Google Scholar 

  10. C.S. Huang, C.Y. Yeh, Y.H. Chang, Y.M. Hsieh, C.Y. Ku, Q.T. Lai, Field emission properties of CNT-ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)

    Article  CAS  Google Scholar 

  11. W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  12. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  CAS  Google Scholar 

  13. N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube. Nature (Lond.) 420, 393–395 (2002)

    Article  Google Scholar 

  14. J. Jiao, L.F. Dong, D.W. Tuggle, C.L. Mosher, S. Foxley, J. Tawdekar, Fabrication and characterization of carbon nanotube field emitters. Mater. Res. Soc. Symp. Proc. 706, 113–117 (2002)

    CAS  Google Scholar 

  15. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75, 873–875 (1999)

    Article  CAS  Google Scholar 

  16. J.M. Bonard, J.P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A Mater. Sci. Process. 69, 245–254 (1999)

    Article  CAS  Google Scholar 

  17. M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Raman spectroscopy and field emission properties of CVD-grown carbon nanotube films. Appl. Phys. A 73, 409–418 (2001)

    Article  CAS  Google Scholar 

  18. J.M. Green, L. Dong, T. Gutu, J. Jiao, J.F. Conley, Y. Ono, ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties. J. Appl. Phys. 99, 094308–094311 (2006)

    Article  Google Scholar 

  19. H. Kim, W. Sigmund, Zinc oxide nanowires on carbon nanotubes. Appl. Phys. Lett. 81, 2085–2087 (2002)

    Article  CAS  Google Scholar 

  20. L. Jiang, L. Gao, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys. 91, 313–316 (2005)

    Article  CAS  Google Scholar 

  21. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829 (2004)

    Article  CAS  Google Scholar 

  22. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Superlattice Microstruct. 34, 3–32 (2003)

    Article  CAS  Google Scholar 

  23. W.Z. Li, H. Zhang, C.Y. Wang, Y. Zhang, L.W. Xu, K. Zhu, S.S. Xie, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 70, 2684–2686 (1997)

    Article  CAS  Google Scholar 

  24. A. Hirsch, Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002)

    Article  CAS  Google Scholar 

  25. Y. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T.S. Wee, J.T.L. Thong, C.H. Sow, Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv. Mater. 18, 587–592 (2006)

    Article  CAS  Google Scholar 

  26. P.H. Tan, S.L. Zhang, K.T. Yue, F.M. Huang, Z.J. Shi, X.H. Zhou, Z.N. Gu, Comparative raman study of carbon nanotubes prepared by D.C. arc discharge and catalytic methods. J. Raman Spectrosc. 28, 369–372 (1997)

    Article  CAS  Google Scholar 

  27. C.F. Chen, C.L. Tsai, C.L. Lin, The characterization of boron-doped carbon nanotube arrays. Diam. Relat. Mater. 12, 1500–1504 (2003)

    Article  CAS  Google Scholar 

  28. L. Velantini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Effect of catalyst layer thickness and Ar dilution on the plasma deposition of multi-walled carbon nanotubes. Diam. Relat. Mater. 12, 821–826 (2003)

    Article  Google Scholar 

  29. X.L. Li, C. Li, Y. Zhang, D.P. Chu, W.I. Milne, H.J. Fan, Atomic layer deposition of ZnO on multi-walled carbon nanotubes and its use for synthesis of CNT-ZnO heterostructures. Nanoscale Res. Lett. 5, 1836–1840 (2010)

    Article  CAS  Google Scholar 

  30. T.C. Damen, S.P.S. Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142, 570–574 (1966)

    Article  CAS  Google Scholar 

  31. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 82, 2023–2025 (2003)

    Article  CAS  Google Scholar 

  32. C. Geng, Y. Jiang, Y. Yao, X. Meng, J.A. Zapien, C.S. Lee, Y. Lifshitz, S.T. Lee, Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv. Funct. Mater. 14, 589–594 (2004)

    Article  CAS  Google Scholar 

  33. Y. Du, M.S. Zhang, J. Hong, Y. Shen, Q. Chen, Z. Yin, Structural and optical properties of nanophase zinc oxide. Appl. Phys. A 76, 171–176 (2003)

    Article  CAS  Google Scholar 

  34. D. Temple, C.A. Ball, W.D. Palmer, L.N. Yadon, D. Vellenga, J. Mancusi, G.E. McGuire, H.F. Gray, Fabrication of column-based silicon field emitter arrays for enhanced performance and yield. J. Vac. Sci. Technol. B 13, 150–157 (1995)

    Article  CAS  Google Scholar 

  35. M. Sveningsson, R.E. Morjan, O.A. Nerushev, E.B. Campbell Eleanor, D. Malsch, J.A. Schaefer, Highly efficient electron field emission from decorated multiwalled carbon nanotube films. Appl. Phys. Lett. 85, 4487–4489 (2004)

    Article  CAS  Google Scholar 

  36. J.M. Green, L. Dong, T. Gutu, J. Jiao, J.F. Conley, Y. Ono, ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties. J. Appl. Phys. 99, 094308–094311 (2006)

    Article  Google Scholar 

  37. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648–3650 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salar Elahi.

Additional information

It has come to our attention that the abovementioned paper containing results and figures that have been copied from already published papers in violation of copyright laws and ethical standards of this journal and the scientific community. Therefore, this paper is retracted and should not be cited in the literature as original research.”

An erratum to this article is available at https://doi.org/10.1007/s10904-017-0668-8.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farazmand, P., Fehli, S., Salar Elahi, A. et al. RETRACTED ARTICLE: Morphological and Field Emission Properties of ZnO Deposited MWCNT by RF Sputtering and PECVD. J Inorg Organomet Polym 25, 1470–1477 (2015). https://doi.org/10.1007/s10904-015-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0263-9

Keywords

Navigation