Skip to main content
Log in

Improved field emission stability with a high current density of decorated CNTs for electron emission devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-pressure chemical vapour deposition (LPCVD) has been used to grow multi-walled carbon nanotubes (MWCNTs) on a silicon (Si) substrate. The Si substrate is coated with iron (Fe) nanoparticles at different times of deposition at a power of 100 W (W) by using Radio Frequency (RF) sputtering. In this paper, we have prepared MWCNTs with different thicknesses of Fe nanoparticles. To enhance the field emission properties, we coat the surface of MWCNTs with Zinc oxide (ZnO) nanoparticles for 5 min at 100 W power by using the RF sputtering technique. The growth of MWCNTs and the attaching of ZnO nanoparticles on MWCNTs were substantiated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The field emission studies of ZnOx–Fex@MWCNTs (where x represents 5 min) nanostructures show that the current density increases remarkably. Compared to other field emitters such as MWCNTs and ZnO-attached MWCNTs, the ZnO attached MWCNTs had less iron thickness MWCNTs field emitters are better field emitters with lower turn-on voltage, higher current density, higher field enhancement factor, and better repeatability, and they also show good stability over a period of 15 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

This submitted report contains all of the data generated or analysed during this investigation.

References

  1. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115, 4744–4822 (2015)

    Article  CAS  Google Scholar 

  2. S. Iijima, Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  3. H. Li, C. Xu, N. Srivastava, K. Banerjee, IEEE Trans. Electron. Devices 56, 1799–1821 (2009)

    Article  CAS  Google Scholar 

  4. O. Gohardani, M.C. Elola, C. Elizetxea, Prog. Aerosp. Sci 70, 42–68 (2014)

    Article  Google Scholar 

  5. M. Sarvar, M.M.H. Raza, S.M. Aalam, M. Sadiq, M.S. Khan, M. Zulfequar, J. Ali, NANO 17, 2250017 (2022)

    Article  Google Scholar 

  6. A. Abdelhalim, A. Abdellah, G. Scarpa, P. Lugli, Nanotechnology 25, 055208 (2014)

    Article  Google Scholar 

  7. P. Serp, B. Machado, Royal Society of Chemistry 23 (2015)

  8. H. Bai, X. Zan, L. Zhang, D.D. Sun, Sep. Purif. Technol. 156, 922–930 (2015)

    Article  CAS  Google Scholar 

  9. C. Gao, Z. Guo, J.H. Liu, X. J. Huang, Nanoscale 4, 1948–1963 (2012)

    Article  CAS  Google Scholar 

  10. S. Srivastava, N.A. Kotov, Acc. Chem. Res. 41, 1831–1841 (2008)

    Article  CAS  Google Scholar 

  11. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Compos. Part A: Appl. Sci. Manufac. 41, 1345–1367 (2010)

    Article  Google Scholar 

  12. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38, 1232–1261 (2013)

    Article  CAS  Google Scholar 

  13. S.D. Sheng, S. Perathoner, G. Centi, Chem. Rev. 113, 5782–5816 (2013)

    Article  Google Scholar 

  14. T. Zhiyong, N.A. Kotov, Adv. Mater. 17, 951–962 (2005)

    Article  Google Scholar 

  15. G.G. Wildgoose, C.E. Banks, R.G. Compton, Small 2, 182–193 (2006)

    Article  CAS  Google Scholar 

  16. R.S. Devan, R.A. Patil, J.H. Lin, Y..R.. Ma, Adv. Funct. Mater. 22, 3326–3370 (2012)

    Article  CAS  Google Scholar 

  17. X. Lu, W. Zhang, C. Wang, T.C. Wen, Y. Wei, Prog. Polym. Sci 36, 671–712 (2011)

    Article  CAS  Google Scholar 

  18. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldie, M. Prato, J. Mater. Chem. 17, 2679–2694 (2007)

    Article  CAS  Google Scholar 

  19. X.R. Ye, Y. Lin, C.M. Wai, Chem. Commun. 9, 642 (2003)

    Article  Google Scholar 

  20. N. Ji Qi, C. Benipal, Liang, L. Wenzhen, Appl. Catal. B 199, 494–503 (2016)

    Article  Google Scholar 

  21. Ö. Ümit, Y.I. Alivov, C.L.A. Teke, M. Reshchikov, S. Doğan, V.C.S.J. Avrutin, S.-J. Cho, H. Morkoç, J. App. Phys. 98, 11 (2005)

    Google Scholar 

  22. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 184, 605–609 (1998)

    Article  Google Scholar 

  23. D.M. Bagnall, Y.F. Chen, Z.Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Yao, T. Goto, Appl. Phys. Lett. 70, 2230–2232 (1997)

    Article  CAS  Google Scholar 

  24. G.R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 41, 2446–2461 (2002)

    Article  CAS  Google Scholar 

  25. E. Dominik, Chem. Rev. 110, 1348–1385 (2010)

    Article  Google Scholar 

  26. G. Chao, Z. Guo, J.H. Liu, X.J. Huang, Nanoscale 4, 1948–1963 (2012)

    Article  Google Scholar 

  27. S. Deckers, S. Angelique, M. Loo, N.H. Mayne-L’hermite, N. Boime, C. Menguy, B. Reynaud, Gouget, M. Carriere, Environ. Sci. Technol. 43, 8423–8429 (2009)

    Article  Google Scholar 

  28. L. Robert, L.M. Hock, A. Kroll, D. Hahn, J. Schnekenburger, K. Wiench, W. Wohlleben, Adv. Mater. 22, 2601–2627 (2010)

    Article  Google Scholar 

  29. C.S. Huang, C.Y. Yeh, Y.H. Chang, Y. M.Hsieh, C.Y. Ku, Q.T. Lai, Diamond Related Mater. 18, 452–456 (2009)

    Article  CAS  Google Scholar 

  30. R.K. Kumar, M. Husain, Z.A. Ansari, J. Nanosci. Nanotechnol. 11, 8 (2011)

    Google Scholar 

  31. T.P. Kumar, Y.S. Zhou, Y.F. Lu, K. Baskar, Appl. Mater. Interfaces 2, 2863 (2010)

    Article  Google Scholar 

  32. X.Y. Wang, B.Y. Xia, X.F. Zhu, J.S. Chen, S.L. Qiu, J.X. Li, Solid State Chem. 181, 822–827 (2008)

    Article  CAS  Google Scholar 

  33. S. Zuo, X. Li, W. Liu, Y. He, Z. Xiao, C. Zhu, J. Nanomater 382068, 1–5 (2011)

    Article  Google Scholar 

  34. M. Woellner, S. Hausdorf, N. Klein, P. Mueller, Martin W. Smith, Stefan Kaskel, Adv. Mater. 30, 1704679 (2018)

    Article  Google Scholar 

  35. W. Tian, X. Liu, Wenbo Yu, App. Sci. 8, 1118 (2018)

    Article  Google Scholar 

  36. G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2, 213–234 (2013)

    Article  CAS  Google Scholar 

  37. L. Dai, D.W. Chang, Wen Lu, Jong-Beom. Baek, Small 8, 1130–1166 (2012)

    Article  CAS  Google Scholar 

  38. R.J. Parmee, C.M. Collins, W.I. Milne, T. Matthew, Cole. Nano Conver. 2, 1–27 (2015)

    Article  Google Scholar 

  39. F. Giubileo, A.D. Bartolomeo, M. Sarno, C. Altavilla, S. Santandrea, P. Ciambelli, A.M. Cucolo, Carbon 50, 163–169 (2012)

    Article  CAS  Google Scholar 

  40. N.D. Jonge, M. Allioux, M. Doytcheva, M. Kaiser, K.B.K. Teo, R.G. Lacerda, William I. Milne, Appl. Phys. Lett. 85, 1607–1609 (2004)

    Article  Google Scholar 

  41. R.M. Roth, N.C. Panoiu, M.M. Adams, R.M. Osgood, C.C. Neacsu, M.B. Raschke, Opt. Exp. 14, 2921–2931 (2006)

    Article  Google Scholar 

  42. N. Liu, G.W. Zeng, H. Long, X. Zhao, J. Phys. Chem. C 115, 14377–14385 (2011)

    Article  CAS  Google Scholar 

  43. A. De Heer, Walt, A. Chatelain, D. Ugarte, Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  44. H. Bonard, Jean-Marc, T. Kind, T. Stöckli, L.O. Nilsson, Solid-State Electron. 45, 893–914 (2001)

    Article  Google Scholar 

  45. N.S. Xu, S.E. Huq, Mater. Sci. Eng. R: Rep 48, 47–189 (2005)

    Article  Google Scholar 

  46. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Science 269, 1550–1553 (1995)

    Article  CAS  Google Scholar 

  47. Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett. 70, 3308–3310 (1997)

    Article  CAS  Google Scholar 

  48. J.M. Bonard, J.-P. Salvetat, T. Stöckli, L. Forro, A. Chatelain, Appl. Phys. A 69, 245–254 (1999)

    Article  CAS  Google Scholar 

  49. N.S. Lee, D.S. Chung, I.T. Han, J.H. Kang, Y.S. Choi, H.Y. Kim, S.H. Park et al., Diam. Relat. Mater. 10, 265–270 (2001)

    Article  CAS  Google Scholar 

  50. F. Bonard, Jean-Marc, T. Maier, A. Stöckli, W.A. Châtelain, J.P. de Heer, Salvetat, Ultramicroscopy 73, 7–15 (1998)

    Article  Google Scholar 

  51. R. Ali, H. Rasooli, H. Baghban, Springer Science & Business Media 77, (2010)

  52. T. Utsumi, IEEE Trans. Electron. Devices 38, 2276–2283 (1991)

    Article  Google Scholar 

  53. A.A. Talin, K.A. Dean, J.E. Jaskie, Solid-state electron. 45, 963–976 (2001)

    Article  CAS  Google Scholar 

  54. T. Hargreaves, M. Nye, J. Burgess, Energy policy 38, 6111–6119 (2010)

    Article  Google Scholar 

  55. M. Buchert, A. Manhart, D. Bleher, D. Pingel. Freiburg: Öko-Institut eV 49, 30–40 (2012)

Download references

Acknowledgements

Mohd Sarvar acknowledges the DST-INSPIRE fellowship (Ref No. DST/INSPIRE FELLOWSHIP/2019/IF-190286), which he received from the DST, New Delhi.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MS Conceptualization, Methodology, Data curation, Formal analysis, Writing - original draft, Writing – review & editing. SMA Visualization. MMHR Visualization. MSK Resources, Writing - review. JA Conceptualization, Supervision, Resources, Writing - review & editing.

Corresponding author

Correspondence to Javid Ali.

Ethics declarations

Conflict of interest

The authors claim that they have no known competing financial interests or personal ties that could have influenced the research presented in this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvar, M., Aalam, S.M., Raza, M.M.H. et al. Improved field emission stability with a high current density of decorated CNTs for electron emission devices. J Mater Sci: Mater Electron 34, 163 (2023). https://doi.org/10.1007/s10854-022-09420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09420-1

Navigation