Skip to main content
Log in

ParEGO extensions for multi-objective optimization of expensive evaluation functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper deals with multi-objective optimization in the case of expensive objective functions. Such a problem arises frequently in engineering applications where the main purpose is to find a set of optimal solutions in a limited global processing time. Several algorithms use linearly combined criteria to use directly mono-objective algorithms. Nevertheless, other algorithms, such as multi-objective evolutionary algorithm (MOEA) and model-based algorithms, propose a strategy based on Pareto dominance to optimize efficiently all criteria. A widely used model-based algorithm for multi-objective optimization is Pareto efficient global optimization (ParEGO). It combines linearly the objective functions with several random weights and maximizes the expected improvement (EI) criterion. However, this algorithm tends to favor parameter values suitable for the reduction of the surrogate model error, rather than finding non-dominated solutions. The contribution of this article is to propose an extension of the ParEGO algorithm for finding the Pareto Front by introducing a double Kriging strategy. Such an innovation allows to calculate a modified EI criterion that jointly accounts for the objective function approximation error and the probability to find Pareto Set solutions. The main feature of the resulting algorithm is to enhance the convergence speed and thus to reduce the total number of function evaluations. This new algorithm is compared against ParEGO and several MOEA algorithms on a standard benchmark problems. Finally, an automotive engineering problem allowing to illustrate the applicability of the proposed approach is given as an example of a real application: the parameter setting of an indirect tire pressure monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Several recordings of all vehicle data during real drivings.

  2. When the tire pressure is under a 20% of the nominal pressure.

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theor. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  3. Clausen, J.: Branch and bound algorithms principles and examples. Technical report, Department of Computer Science, University of Copenhagen (1999)

  4. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  5. Coello, C.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, US (2007)

    MATH  Google Scholar 

  6. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies. Springer-Verlag, Berlin/Heidelberg (2004)

    Book  MATH  Google Scholar 

  7. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: Pesa-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 283–290 (2001)

  8. Davins-Valldaura, J., Plestan, F., Moussaoui, S., Pita Gil, G.: Design and optimization of nonlinear observers for road curvature and state estimation in autonomous vehicles. IEEE Trans. Intell. Transp. Syst. (submitted paper)

  9. Davins-Valldaura, J., Plestan, F., Moussaoui, S., Gil, Pita, G.: Observers design for the road curvature estimation in traffic jam pilot system. In: Submitted to European Control Conference. Aalborg, Denmark (2016)

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)

    Article  Google Scholar 

  11. El Tannoury, C., Moussaoui, S., Plestan, F., Romani, N., Pita Gil, G.: Synthesis and application of nonlinear observers for the estimation of tire effective tadius and rolling resistance of an automotive vehicle. IEEE Trans. Control Syst. Technol. 21(6), 2408–2416 (2013)

    Article  Google Scholar 

  12. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  15. John, H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Cambridge (1975)

    Google Scholar 

  16. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  20. Kleijnen, J.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2005)

    Article  Google Scholar 

  22. Knowles, J., Hughes, E.J.: Multiobjective optimization on a budget of 250 evaluations. In: Evolutionary Multi-Criterion Optimization, vol. 3410. Springer, Berlin/Heidelberg (2005)

  23. Knowles, J., Nakayama, H.: Meta-modeling in multiobjective optimization. Multiobjective Optim. 5252, 245–284 (2008)

    Article  Google Scholar 

  24. Mayer, H.: Comparative diagnosis of tyre pressures. In: Proceedings of 3rd IEEE Conference on Control Applications, pp. 627–632. Glasgow, UK (1994)

  25. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  26. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  27. Minoux, M.: Programation Mathématique : Théorie et Algorithmes, vol. 14. Lavoisier, Paris (1962)

    Google Scholar 

  28. Müller, W.: Collecting Spatial Data: Optimum Design of Experiments for Random Fields. Springer-Verlag, Berlin/Heidelberg (2007)

    MATH  Google Scholar 

  29. Persson, N., Gustafsson, F., Drevo, M.: Indirect tire pressure monitoring using sensor fusion. In: Proceedings of 2002 SAE World Congress and Exhibition (2002)

  30. Praveen, C., Duvigneau, R.: Study of some strategies for global optimization using Gaussian process models with application to aerodynamic design. Research report, INRIA (2009)

  31. Priddy, K., Keller, P.: Artificial Neural Networks: An Introduction. Society of Photo Optical, Tutorial Text Series, vol. 68. SPIE Press (2005)

  32. Zhang, Q., Liu, B., Liu, E.G.: Design of tire pressure monitoring system based on resonance frequency method. In. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2009)

  33. Regis, R., Shoemaker, C.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37(1), 113–135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rios, L., Sahinidis, N.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sen, K., Stoffa, P.: Global optimization methods in geophysical inversion. Cambridge University Press, London (2013)

    Book  MATH  Google Scholar 

  36. Simpson, T., Mauery, T., Korte, J., Mistree, F.: Comparison of response surface and kriging models for multidisciplinary design. Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization vol. 1, pp. 381–391 (1998)

  37. Smith, R.L.: Efficient monte carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32(6), 1296–1308 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  39. Stein, M.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999)

    Book  MATH  Google Scholar 

  40. Velupillai, S., Guveng, L.: Tire pressure monitoring. IEEE Control Syst. Mag. 27(6), 22–25 (2007)

    Article  Google Scholar 

  41. Voutchkov, I., Keane, A.: Multi-objective optimization using surrogates. Comput. Intell. Optim. Adapt. Learn. Optim. 7, 155–175 (2010)

    MATH  Google Scholar 

  42. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Sowiski, R. (eds.) Multiobjective Optimization. Lecture Notes in Computer Science, vol. 5252, pp. 373–404. Springer, Berlin (2008)

  43. Zitzler, E., Laumanns, M., Thiele, L.: Spea 2: Improving the strength pareto evolutionary algorithm. Technical report (2001)

  44. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Davins-Valldaura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davins-Valldaura, J., Moussaoui, S., Pita-Gil, G. et al. ParEGO extensions for multi-objective optimization of expensive evaluation functions. J Glob Optim 67, 79–96 (2017). https://doi.org/10.1007/s10898-016-0419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0419-3

Keywords

Navigation