Skip to main content
Log in

Finding sparse solutions of systems of polynomial equations via group-sparsity optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The paper deals with the problem of finding sparse solutions to systems of polynomial equations possibly perturbed by noise. In particular, we show how these solutions can be recovered from group-sparse solutions of a derived system of linear equations. Then, two approaches are considered to find these group-sparse solutions. The first one is based on a convex relaxation resulting in a second-order cone programming formulation which can benefit from efficient reweighting techniques for sparsity enhancement. For this approach, sufficient conditions for the exact recovery of the sparsest solution to the polynomial system are derived in the noiseless setting, while stable recovery results are obtained for the noisy case. Though lacking a similar analysis, the second approach provides a more computationally efficient algorithm based on a greedy strategy adding the groups one-by-one. With respect to previous work, the proposed methods recover the sparsest solution in a very short computing time while remaining at least as accurate in terms of the probability of success. This probability is empirically analyzed to emphasize the relationship between the ability of the methods to solve the polynomial system and the sparsity of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For example, consider the monomials \(u_1=x_1,\,u_2=x_2,\,u_3=x_1x_2,\,u_4=x_1^2 x_2\), then the structure of \(u_3\) and \(u_4\) is enforced by \(u_3=u_1u_2\) and \(u_4 = u_1u_3\). But note that since these constraints are relaxed in the final formulation, the estimation can yield \(u_3\ne u_1u_2\), which then recursively implies that all monomial constraints involving \(u_3\) are meaningless.

  2. Note that since all the groups have the same number of variables, they need not be weighted by a function of the number of variables in each group.

  3. The maximal number of iterations is the number of groups \(n\), but if the correct sparsity pattern is recovered then the algorithm stops earlier.

  4. The code for the proposed methods is available at http://www.loria.fr/~lauer/software/.

  5. The results reported here are obtained with 10 iterations of the reweighting procedure of [11] applied to (5).

  6. Assume \(d> n\), then, the assumption of the Proposition leads to \(n> n(\Vert \varvec{x}\Vert _0 + n)\) and \(\Vert \varvec{x}\Vert _0 + n< 1\) which is impossible since \(n\ge 1\).

References

  1. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. High Perform. Optim. 33, 197–232 (2000)

    Article  Google Scholar 

  2. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37(1), 106–125 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blumensath, T.: Compressed sensing with nonlinear observations and related nonlinear optimisation problems. IEEE Trans. Inf. Theory 59(6), 3466–3474 (2013)

    Article  MathSciNet  Google Scholar 

  6. Blumensath, T., Davies, M.E.: Gradient pursuit for non-linear sparse signal modelling. In: European Signal Processing Conference (EUSIPCO), pp. 25–29 (2008)

  7. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Candès, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians: Invited Lectures, pp. 1433–1452 (2006)

  9. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6(1), 199–225 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Candès, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MATH  Google Scholar 

  11. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deng, W., Yin, W., Zhang, Y.: Group sparse optimization by alternating direction method. Technical report TR11-06, Department of Computational and Applied Mathematics, Rice University (2011)

  13. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ehler, M., Fornasier, M., Sigl, J.: Quasi-linear compressed sensing. Multiscale Model. Simul. 12(2), 725–754 (2014)

    Article  MathSciNet  Google Scholar 

  17. Eldar, Y.C., Kutyniok, G. (eds.): Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  18. Fienup, J.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  Google Scholar 

  19. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  20. Gerchberg, R., Saxton, W.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  21. Gonsalves, R.: Phase retrieval from modulus data. J. Opt. Soc. Am. 66(9), 961–964 (1976)

    Article  Google Scholar 

  22. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer. http://stanford.edu/~boyd/graph_dcp.html (2008)

  23. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx (2013)

  24. Kohler, D., Mandel, L.: Source reconstruction from the modulus of the correlation function: a practical approach to the phase problem of optical coherence theory. J. Opt. Soc. Am. 63(2), 126–134 (1973)

    Article  Google Scholar 

  25. Le, V.L., Lauer, F., Bloch, G.: Selective \(\ell _1\) minimization for sparse recovery. IEEE Trans. Autom. Control 59(11) (to appear) (2014)

  26. Marchesini, S.: Phase retrieval and saddle-point optimization. J. Opt. Soc. Am. A 24(10), 3289–3296 (2007)

    Article  Google Scholar 

  27. Ohlsson, H., Eldar, Y.C.: On conditions for uniqueness in sparse phase retrieval. CoRR arXiv:abs/1308.5447 (2013)

  28. Ohlsson, H., Yang, A.Y., Dong, R., Sastry, S.: Nonlinear basis pursuit. In: Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, pp. 315–319 (2013)

  29. Ohlsson, H., Yang, A.Y., Dong, R., Verhaegen, M., Sastry, S.: Quadratic basis pursuit. arXiv:1301.7002 (2013)

  30. Ranieri, J., Chebira, A., Lu, Y.M., Vetterli, M.: Phase retrieval for sparse signals: uniqueness conditions. CoRR arXiv:abs/1308.3058 (2013)

  31. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Henrik Ohlsson gratefully acknowledges support from the NSF project FORCES (Foundations Of Resilient CybEr-physical Systems), the Swedish Research Council in the Linnaeus center CADICS, the European Research Council under the advanced grant LEARN, contract 267381, a postdoctoral grant from the Sweden–America Foundation, donated by ASEA’s Fellowship Fund, and a postdoctoral grant from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Lauer.

Appendices

Appendix 1: Bound on the sparsity level of \(\phi \)

Lemma 3

For all \((a,b,d) \in (\mathbb {N}^*)^3\) such that \(a\ge d(b+d)\), the inequality

$$\begin{aligned} \frac{1}{a}\sum _{q=2}^d \begin{pmatrix}a + q-1\\ q\end{pmatrix} \ge \frac{d}{b} \sum _{q=2}^d\begin{pmatrix}b + q-1\\ q\end{pmatrix} \end{aligned}$$

holds.

Proof

For \(q\le d\), we can bound the terms in the sum as

$$\begin{aligned} \frac{1}{a} \begin{pmatrix}a + q-1\\ q\end{pmatrix}&= \frac{(a+q-1)!}{a\, q! (a-1)!} = \frac{1}{a\,q!}\prod _{i=0}^{q-1}(a+i) = \frac{1}{q!}\prod _{i=1}^{q-1}(a+i)\\&\ge \frac{1}{q!} a^{q-1} \\&\ge \frac{1}{q!} d^{q-1}(b+d)^{q-1} \\&\ge \frac{1}{q!} d^{q-1} \prod _{i=1}^{q-1} (b+i) \\&\ge \frac{d^{q-1}}{b} \begin{pmatrix}b + q-1\\ q\end{pmatrix} \end{aligned}$$

where we used \(a\ge d(b+d)\) in the second inequality. Then

$$\begin{aligned} \frac{1}{a}\sum _{q=2}^d \begin{pmatrix}a + q-1\\ q\end{pmatrix}&\ge \frac{1}{b} \sum _{q=2}^d d^{q-1} \begin{pmatrix}b + q-1\\ q\end{pmatrix} \\&\ge \frac{d}{b} \sum _{q=2}^d d^{q-2} \begin{pmatrix}b + q-1\\ q\end{pmatrix} \\&\ge \frac{d}{b} \sum _{q=2}^d \begin{pmatrix}b + q-1\\ q\end{pmatrix} \end{aligned}$$

\(\square \)

Proposition 2

Let the mapping \(\phi : \mathbb {R}^n \rightarrow \mathbb {R}^M\) be defined as above. Then, with \(d\ge 3\) and \(n\ge d(\Vert \varvec{x}\Vert _0 + d)\), the vector \(\phi (\varvec{x})\) is sparser than the vector \(\varvec{x}\) in the sense that the inequality

$$\begin{aligned} \frac{\Vert \phi (\varvec{x})\Vert _0}{M} \le \frac{2 \Vert \varvec{x}\Vert _0 }{d n} \end{aligned}$$

holds for all \(\varvec{x}\in \mathbb {R}^n\).

Proof

By construction, the number of nonzeros in \(\phi (\varvec{x})\) is equal to the sum over \(q\), \(1\le q\le d\), of the number of monomials of degree \(q\) in \(\Vert \varvec{x}\Vert _0\) variables:

$$\begin{aligned} \frac{\Vert \phi (\varvec{x})\Vert _0}{M}&= \frac{ \sum _{q=1}^d\begin{pmatrix}\Vert \varvec{x}\Vert _0 + q-1\\ q\end{pmatrix}}{ \sum _{q=1}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}} = \frac{ \Vert \varvec{x}\Vert _0 }{n} \frac{ \frac{1}{\Vert \varvec{x}\Vert _0 } \sum _{q=1}^d\begin{pmatrix}\Vert \varvec{x}\Vert _0 + q-1\\ q\end{pmatrix}}{ \frac{1 }{n} \sum _{q=1}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}} \\&= \frac{ \Vert \varvec{x}\Vert _0 }{n} \frac{ 1 + \frac{1}{\Vert \varvec{x}\Vert _0 } \sum _{q=2}^d\begin{pmatrix}\Vert \varvec{x}\Vert _0 + q-1\\ q\end{pmatrix}}{1+ \frac{1 }{n} \sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}} \\&= \frac{ \Vert \varvec{x}\Vert _0 }{n} \left[ \frac{ 1}{1+ \frac{1 }{n} \sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}} + \frac{ \frac{1}{\Vert \varvec{x}\Vert _0 } \sum _{q=2}^d\begin{pmatrix}\Vert \varvec{x}\Vert _0 + q-1\\ q\end{pmatrix}}{1+ \frac{1 }{n}\sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}}\right] \end{aligned}$$

The assumption \(n\ge d(\Vert \varvec{x}\Vert _0 + d)\) implies thatFootnote 6 \(d\le n\). With \(d\le n\), we have

$$\begin{aligned} \frac{1 }{n} \begin{pmatrix}n + q-1\\ q\end{pmatrix} \ge \frac{1}{q!} n^{q-1} \ge \frac{1}{q!} d^{q-1} \end{aligned}$$

which yields

$$\begin{aligned} \frac{1 }{n} \sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix} \ge \frac{1 }{n}\sum _{q=2}^d \begin{pmatrix}n + 2-1\\ 2\end{pmatrix} \ge (d-1)\frac{d}{2} \end{aligned}$$

Now, on the one hand we have

$$\begin{aligned} d\ge 3 \Rightarrow \,&\frac{1}{2}d^2 -\frac{3}{2}d + 1 \ge 0 \\ \Rightarrow \,&1 + \frac{1 }{n} \sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix} \ge d \\ \Rightarrow \,&\frac{ 1}{1+ \frac{1 }{n} \sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}} \le \frac{1}{d} \end{aligned}$$

and on the other hand, Lemma 3 yields

$$\begin{aligned} \frac{ \frac{1}{\Vert \varvec{x}\Vert _0 } \sum _{q=2}^d\begin{pmatrix}\Vert \varvec{x}\Vert _0 + q-1\\ q\end{pmatrix}}{1+\frac{1 }{n} \sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}} \le \frac{ \frac{1}{\Vert \varvec{x}\Vert _0 } \sum _{q=2}^d\begin{pmatrix}\Vert \varvec{x}\Vert _0 + q-1\\ q\end{pmatrix}}{\frac{1 }{n}\sum _{q=2}^d\begin{pmatrix}n + q-1\\ q\end{pmatrix}} \le \frac{1}{d} \end{aligned}$$

Thus,

$$\begin{aligned} \frac{\Vert \phi (\varvec{x})\Vert _0}{M} \le \frac{2 \Vert \varvec{x}\Vert _0 }{d n} \end{aligned}$$

\(\square \)

Appendix 2: Other conditions for sparse recovery

The following uses the exact value of \(\Vert \varvec{\phi }_0\Vert _0\).

Theorem 7

Let \(\varvec{x}_0\) denote the unique solution to (1)–(2). If the inequality

$$\begin{aligned} \sum _{q=1}^d\begin{pmatrix}\Vert \varvec{x}_0\Vert _0 + q-1\\ q\end{pmatrix} \le \frac{1}{2}\left( 1+ \frac{1}{\mu (\varvec{A})}\right) \end{aligned}$$
(33)

holds, then the solution \(\hat{\varvec{\phi }}\) to (5) is unique and equal to \(\phi (\varvec{x}_0)\), thus providing \(\hat{\varvec{x}} = \varvec{x}_0\).

Another more compact but slightly less tight result is as follows.

Theorem 8

Let \(\varvec{x}_0\) denote the unique solution to (1)–(2). If the inequality

$$\begin{aligned} \begin{pmatrix}\Vert \varvec{x}_0\Vert _0 + d-1\\ d\end{pmatrix} \le \frac{1}{2d}\left( 1+ \frac{1}{\mu (\varvec{A})}\right) \end{aligned}$$
(34)

holds, then the solution \(\hat{\varvec{\phi }}\) to (5) is unique and equal to \(\phi (\varvec{x}_0)\), thus providing \(\hat{\varvec{x}} = \varvec{x}_0\).

Proof

Since the terms in the sum of Theorem 7 form an increasing sequence, we have

$$\begin{aligned} \sum _{q=1}^d\begin{pmatrix}\Vert \varvec{x}_0\Vert _0 + q-1\\ q\end{pmatrix} \le d \begin{pmatrix}\Vert \varvec{x}_0\Vert _0 + d-1\\ d\end{pmatrix} \end{aligned}$$

which yields the sought statement by application of Theorem 7. \(\square \)

Appendix 3: Value of \(m\)

Let us define \(m\) as the number of monomials involving a base variable \(x\) with a degree \(\ge 1\). It can be computed as the sum over \(q,\, 0\le q\le d-1\) of the number of monomials of degree \(q\) in \(n-1\) variables times the remaining degree \(d-q\) (since each monomial in \(n-1\) variables can be multiplied by \(x\) or \(x^2 \ldots \) or \(x^{d-q}\) to produce a monomial of degree at most \(d\) in \(n\) variables):

$$\begin{aligned} m = \sum _{q=0}^{d-1} (d-q)\begin{pmatrix}(n-1) + q-1\\ q\end{pmatrix} = \sum _{q=0}^{d-1} (d-q)\begin{pmatrix}n + q-2\\ q\end{pmatrix} . \end{aligned}$$

Another technique computes \(m\) as the total number of all monomials minus the number of monomials not involving \(x\) which is the number of monomials in \(n-1\) variables:

$$\begin{aligned} m&= M - \sum _{q=1}^{d} \begin{pmatrix}n + q-2\\ q\end{pmatrix} \\&= \sum _{q=1}^{d}\begin{pmatrix}n + q-1\\ q\end{pmatrix} - \begin{pmatrix}n + q-2\\ q\end{pmatrix} \\&= \sum _{q=1}^{d} \left[ \frac{(n + q-1)}{n-1} -1\right] \begin{pmatrix}n + q-2\\ q\end{pmatrix}\\&=\sum _{q=1}^{d} \frac{q}{n-1} \begin{pmatrix}n + q-2\\ q\end{pmatrix} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauer, F., Ohlsson, H. Finding sparse solutions of systems of polynomial equations via group-sparsity optimization. J Glob Optim 62, 319–349 (2015). https://doi.org/10.1007/s10898-014-0225-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0225-8

Keywords

Navigation