Skip to main content
Log in

Tunable and Nontoxic Fluorescent Probes Based on Carbon Dots for Imaging of Indole Propionic Acid Receptor in Plant Tissues in Situ

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Indole propionic acid (IPA) is one of the important plant growth hormones for promoting rooting and fruiting. Labeling IPA receptor in plant tissues is able to further track the signal transduction processes of IPA and uncover the function mechanism of IPA on crop productions. In this paper, a tunable and nontoxic fluorescent probe for IPA receptors was designed and synthetized base on carbon dots (C dots). Firstly carboxyl-modified carbon dots were prepared by high temperature cracking of citric acid. The fluorescence emission wavelengths of C dots varied with the excitation wavelengths change. Then IPA-modified carbon dots (IPA-C dots) were prepared by coupling the amino of tryptophan with the carboxyl of as-prepared carbon dots. Compared with C dots, the fluorescence intensity of IPA-C dots was double and the fluorescence stability was satisfactory under various conditions. This probe retained the biological activity of IPA and acted as target recognition of IPA receptors in plant tissues. The probe could avoid green fluorescence background of plants. The imaging results showed that the IPA receptors mainly existed on the membrane of stele. The toxicity test indicated the probe was less toxic than traditional inorganic semiconductor quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lobler M, Klambt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.) I. Purification by immunological methods and characterization. J Biol Chem 260:9848–9853

    CAS  PubMed  Google Scholar 

  2. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  3. Nyangulu JM, Galka MM, Jadhav A, Gai Y, Graham CM, Nelson KM, Cutler AJ, Taylor DC, Banowetz GM, Abrams SR (2005) An affinity probe for isolation of abscisic acid-binding proteins. J Am Chem Soc 127:1662–1664

    Article  CAS  PubMed  Google Scholar 

  4. Liu FF, Yu Y, Lin BX, Hu XG, Cao YJ, Wu JZ (2014) Visualization of hormone binding proteins in vivo based on Mn-doped CdTe QDs. Spectrochim Acta A 131:9–16

    Article  CAS  Google Scholar 

  5. Liu JW, Deng DY, Yu Y, Liu FF, Lin BX, Cao YJ, Hu XG, Wu JZ (2014) In situ detection of salicylic acid binding sites in plant tissues. Luminescence 30:15–25

    Google Scholar 

  6. Dong W, Zhou SQ, Dong Y, Wang JW, Liu S, Zhu PX (2015) Synthesis and characterization of C@CdS dots in aqueous solution and their application in labeling human gastric carcinoma cells. J Nanopart Res 17:124–132

    Article  Google Scholar 

  7. Guo ZJ, Ren JT, Wang JH, Wang EK (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 85:2517–2521

    Article  CAS  PubMed  Google Scholar 

  8. Lia JJ, Zhu JJ (2013) Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 9:2506–2515

    Article  Google Scholar 

  9. Wang L, Hou J, Li HY, Zhao Q, Zhang FS, Zhao JH, Ding H, Ding L (2015) Facile synthesis of nitrogen-doped carbon dots and its application as sensing probes for serum iron. J Nanopart Res 17:457–468

    Article  Google Scholar 

  10. Zhang F, Sun TT, Zhang Y, Li Q, Chai C, Lu L, Shen W, Yang J, He XW, Zhang YK, Li WY (2014) Facile synthesis of functional gadolinium-doped CdTe quantum dots for tumor-targeted fluorescence and magnetic resonance dual-modality imaging. J Mater Chem B 41:7201–7209

    Article  Google Scholar 

  11. Tang YJ, Zhang SL, Wen QQ, Huang HX, Yang PH (2015) A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces. Anal Chim Acta 881:148–154

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Sun HC, Shi FP, Cai N, Lu LH, Su XG (2015) Multi-positively charged dendrimeric nanoparticles induced fluorescence quenching of graphene quantum dots for heparin and chondroitin sulfate detection. Biosens Bioelectron 74:284–290

    Article  CAS  PubMed  Google Scholar 

  13. Narqyus BJ, Love SA, Braun LK, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  Google Scholar 

  14. Qu Q, Zhu AW, Shao XL (2012) Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem Commun 48:5473–5475

    Article  CAS  Google Scholar 

  15. Chai LJ, Zhou J, Feng H, Lin JJ, Qian ZS (2015) A reversible fluorescence nanoswitch based on carbon quantum dots nanoassembly for detection of pyrophosphate ion. Sensor Actuat B-Chem 220:138–145

    Article  CAS  Google Scholar 

  16. Niu WJ, Li Y, Zhu RH, Shan D, Fan YR, Zhang XJ (2015) Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as flurescent probes for sensitive biosensing and bioimaging. Sensor Actuat B-Chem 218:229–236

    Article  CAS  Google Scholar 

  17. Tong GS, Wang JX, Wang RB, Guo XQ, He L, Qiu F, Wang G, Zhu BS, Zhu XY, Liu T (2015) Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(aminno amine). J Mater Chem B 3:700–706

    Article  CAS  Google Scholar 

  18. Xue MY, Zhang LL, Zou MB, Lan CQ, Zhan ZH, Zhao SL (2015) Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensor Actuat B-Chem 219:50–56

    Article  CAS  Google Scholar 

  19. Goh EJ, Kim KS, Kim YR, Jung HS, Beack S, Kong WH, Scarcelli G, Yun SH, Hahn SK (2012) Bioimaging of hyaluronic acid derivative using nanosized carbon dots. Biomacromolecules 13:2554–2561

    Article  CAS  PubMed  Google Scholar 

  20. Xu BL, Zhao CQ, Wei WL, Ren JS, Miyoshi D, Sugimoto N, Qu XG (2012) Aptamer carbon nanodot sandwich used for fluorescent detection of protein. Analyst 137:5483–5486

    Article  CAS  PubMed  Google Scholar 

  21. Liu QL, Xu SH, Niu CX, Li MF, He DC, Lu ZL, Ma L, Na N, Huang F, Jiang H, Ouyang J (2015) Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens Bioelectron 64:119–125

    Article  CAS  PubMed  Google Scholar 

  22. Gao YH, Yu Y, Hu XG, Cao YJ, Wu JZ (2013) Imaging of jasmonic acid binding sites in tissue. Anal Biochem 2:205–211

    Article  Google Scholar 

  23. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068

    Article  CAS  PubMed  Google Scholar 

  24. Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M (2013) Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mate Sci Eng C Mater for Biol Appl 33:2914–2917

    Article  CAS  Google Scholar 

  25. Tao HQ, Yang K, Ma Z, Wan JM, Zhang YJ, Kang ZH, Liu Z (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8:281–290

    Article  CAS  PubMed  Google Scholar 

  26. Yang BH, Li YP, Sun XR, Meng XL, Chen P, Liu N (2013) A pH-responsive drug release system based on doxorubicin conjugated amphiphilic polymer coated quantum dots for tumor cell targeting and tracking. J Chem Technol Biotechnol 88:2169–2175

    Article  CAS  Google Scholar 

  27. Dong W, Guo L, Wang M, Xu SK (2009) CdTe QDs-based prostate-specific antigen probe for human prostate cancer cell imaging. J Lumin 129:926–930

    Article  CAS  Google Scholar 

  28. Sam S, Touahir L, Andresa JS, Allongue P, Chazalviel JN, Gouget-Laemmel AC, Villeneuve CHD, Moraillon A, Ozanam F, Gabouze N, Djebbar S (2012) Semiquantitative study of the EDC/NHS actibation of acid terminal groups at modified porous silicon surgaces. Langmuir 26:809–814

    Article  Google Scholar 

  29. Nagy A, Steinbrueck A, Gao J, Doggett N, Hollingsworth JA, Iyer R (2012) Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS Nano 6:4748–4762

    Article  CAS  PubMed  Google Scholar 

  30. Yu Y, Li RY, Wu SS, Lin BX, Cao YJ, Hu XG, Wu JZ (2014) Construction of red-emitting QD probes and determination of indole-propionic acid binding sites in plant tissues. Anal Methods 6:2331–2337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 21575043, 21275056, 21605052 and 51478196; the Platform Construction Project of Guangzhou Science Technology and Innovation Commission under Grant No. 15180001; and the Cultivation Foundation of South China Normal University under Grant No.14KJ08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Yu, Y., Liu, F. et al. Tunable and Nontoxic Fluorescent Probes Based on Carbon Dots for Imaging of Indole Propionic Acid Receptor in Plant Tissues in Situ. J Fluoresc 27, 1495–1503 (2017). https://doi.org/10.1007/s10895-017-2089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2089-z

Keywords

Navigation