Skip to main content
Log in

Synthesis, Photophysical and Redox Properties of the D–π–A Type Pyrimidine Dyes Bearing the 9-Phenyl-9H-Carbazole Moiety

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Novel donor-π-acceptor dyes bearing the pyrimidine unit as an electron-withdrawing group have been synthesized by using combination of two processes, based on the microwave-assisted Suzuki cross-coupling reaction and nucleophilic aromatic substitution of hydrogen. Spectral properties of the obtained dyes in six aprotic solvents of various polarities have been studied by ultraviolet–visible and fluorescence spectroscopy. In contrast to the absorption spectra, fluorescence emission spectra displayed a strong dependence from their solvent polarities. The nature of the observed long wavelength maxima has been elucidated by means of quantum chemical calculations. The electrochemical properties of these dyes have been investigated by using cyclic voltammetry, while their photovoltaic performance was evaluated by a device fabrication study. The experimental and calculation data show that all of the dyes can be regarded as potentially good photosensitizers for dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. Marini А, Muñoz-Losa А, Biancardi A, Mennucci B (2010) What is solvatochromism? J Phys Chem B 114:17128–17135

    Article  CAS  PubMed  Google Scholar 

  3. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  4. Bamfield P (2001) Chromic phenomena: technological application of colour chemistry. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  5. Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006) Colorimetric sensor arrays for volatile organic compounds. Anal Chem 78(11):3591–3600

    Article  CAS  PubMed  Google Scholar 

  6. Anthonov VS, Hohla KL (1983) Dye stability under excimer-laser pumping. Appl Phys B 32(1):9–14

    Article  Google Scholar 

  7. Speiser S, Shakkour N (1985) Photoquenching parameters for commonly used laser dyes. Appl Phys B 38(3):191–197

    Article  Google Scholar 

  8. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  9. Zhu LL, Li X, Ji FY, Ma X, Wang QC, Tian H (2009) Photolockable ratiometric viscosity sensitivity of cyclodextrine polypseudorotaxane with light-active rotor graft. Langmuir 25:3482–3486

    Article  CAS  PubMed  Google Scholar 

  10. Zhang D, Zhang Q, Su J, Tian H (2009) A dual-ion-switched molecular brake based on ferrocene. Chem Commun 1700–1702

  11. Sansregret J, Drake JM, Thomas WRL, Lesiecki ML (1983) Light transport in planar luminescent solar concentrators: the role of DCM self-absorption. Appl Opt 22:573–577

    Article  CAS  PubMed  Google Scholar 

  12. Liu B, Zhu W, Zhang Q, Wu W, Xu M, Ning Z, Xie Y, Tian H (2009) Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cell: tuning photovoltaic performance by structural modification of donor group in donor–π–acceptor system. Chem Commun :1766–1768

  13. Verbitskiy EV, Cheprakova EM, Subbotina JO, Schepochkin AV, Slepukhin PA, Rusinov GL, Charushin VN, Chupakhin ON, Makarova NI, Metelitsa AV, Minkin VI (2014) Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells. Dyes Pigments 100:201–214

    Article  CAS  Google Scholar 

  14. Zhang XH, Chen BJ, Lin XQ, Wong QTY, Lee CS, Kwong HL, Lee ST, Wu SK (2001) A new family of red dopants based on chromen-containing compounds for organic luminescent device. Chem Mater 13(5):1565–1569

    Article  CAS  Google Scholar 

  15. Gompper R, Mair H-J, Polborn K (1997) Synthesis of oligo(diazaphenyls). Tailormade fluorescent heteroaromatics and pathways to nanostructures. Synthesis 696–708

  16. Kanbara T, Kushida T, Saito N, Kuwajima I, Kubota K, Yamamoto T (1992) Preparation and properties of highly electron-accepting poly(pyrimidine2,5-diyl). Chem Lett 583–586

  17. Wong K-T, Hung T-S, Lin Y, Wu C-C, Lee G-H, Peng S-M, Chou CH, Su YO (2002) Suzuki coupling approach for the synthesis of phenylene-pyrimidine alternating oligomers for blue light-emitting material. Org Lett 4(4):513–516

    Article  CAS  PubMed  Google Scholar 

  18. Achelle S, Ramodenc Y, Marsais F, Plé N (2008) Star- and banana-shaped oligomers with a pyrimidine core: synthesis and light-emitting properties. Eur J Org Chem 3129–3140

  19. Ortiz RP, Casado J, Hernández V, López Navarrete JT, Letizia JA, Ratner MA, Facchetti A, Marks TJ (2009) Thiophene-diazine molecular semiconductors: synthesis, structural, electrochemical, optical, and electronic structural properties; implementation in organic field-effect transistors. Chem Eur J 15(20):5023–5039

    Article  CAS  Google Scholar 

  20. Kojima T, Nishida J, Tokito S, Yamashita Y (2009) New n-type field-effect transistors based on pyrimidine-containing compounds with (trifluoromethyl) phenyl groups. Chem Lett 38:428–429

    Article  CAS  Google Scholar 

  21. Achelle S, Plé N (2012) Pyrimidine ring as building block for the synthesis of functionalized π-conjugated materials. Curr Org Synth 9:163–187

    Article  CAS  Google Scholar 

  22. Achelle S, Baudequin C (2013) Recent advances in pyrimidine derivatives as luminescent, photovoltaic and non-linear optical materials. Targets Heterocycl Syst 17:1–34

    CAS  Google Scholar 

  23. Itami K, Yamazaki D, Yoshida J (2004) Pyrimidine-core extended π-systems: general synthesis and interesting fluorescent properties. J Am Chem Soc 126:15396–15397

    Article  CAS  PubMed  Google Scholar 

  24. Bagley MC, Lin Z, Pope SJA (2009) Barium manganate in microwave-assisted oxidation reactions: synthesis of solvatochromic 2,4,6-triarylpyrimidines. Tetrahedron Lett 50:6818–6822

    Article  CAS  Google Scholar 

  25. Tumkevičius S, Voitechovičius A, Adomėnas P (2012) Synthesis of novel 2,4,6-triarylpyrimidines. Chemija 23:61–67

    Google Scholar 

  26. Liu B, Hu XL, Liu J, Zhao YD, Huang ZL (2007) Synthesis and photophysical properties of novel pyrimidine-based two-photon absorption chromophores. Tetrahedron Lett 48:5958–5962

    Article  CAS  Google Scholar 

  27. Li L, Ge J, Wu H, Xu QH, Yao SQ (2012) Organelle-specific detection of phosphatase activities with two-photon fluorogenic probes in cells and tissues. J Am Chem Soc 134:12157–12167

    Article  CAS  PubMed  Google Scholar 

  28. Achelle S, Malval JP, Aloïse S, Barsella A, Spangenberg A, Mager L, Akdas-Killig H, Fillaut JL, Caro B, Robin-le Guen F (2013) Synthesis, photophysics and nonlinear optical properties of stilbenoid pyrimidine-based dyes bearing methylenepyran donor groups. ChemPhysChem 14:2725–2736

    Article  CAS  PubMed  Google Scholar 

  29. Achelle S, Barsella A, Baudequin C, Caro B, Robin-le Guen F (2012) Synthesis and photophysical investigation of a series of push-pull arylvinyldiazine chromophores. J Org Chem 77:4087–4096

    Article  CAS  PubMed  Google Scholar 

  30. Castet F, Pic A, Champagne B (2014) Linear and nonlinear optical properties of arylvinyldiazine dyes: a theoretical investigation. Dyes Pigments 110:256–260

    Article  CAS  Google Scholar 

  31. Denneval C, Achelle S, Baudequin C, Robin-le Guen F (2014) Prediction of photophysical properties of pyrimidine chromophores using Taguchi method. Dyes Pigments 110:49–55

    Article  CAS  Google Scholar 

  32. Ling Q, Huang W, Mei Q, Weng J (2011) Preparation of 4-(hetero)-arylpyrimidins compounds as luminescent materials. Patent CN102206207

  33. Weng J, Mei Q, Fan Q, Ling Q, Tong B, Huang W (2013) Bipolar luminescent materials containing pyrimidine terminals: synthesis, photophysical properties and a theoretical study. RSC Adv 3:21877–21887

    Article  CAS  Google Scholar 

  34. Weng J, Mei Q, Ling Q, Huang W (2012) A new colorimetric and fluorescence ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidine. Tetrahedron 68:3129–3134

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) he molecular orbital calculation was carried out using the gaussian 09, revision D.01. Gaussian, Wallingford

    Google Scholar 

  36. Yanai T, Tew D, Handy N (2014) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  Google Scholar 

  37. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  38. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125:054103

    Article  PubMed  Google Scholar 

  39. Meech SR, Phillips D (1983) Photophysics of some common fluorescence standards. J Photochem 23:193–217

    Article  CAS  Google Scholar 

  40. Barltrop JA, Coyle JD (1975) Excited states in organic chemistry. Wiley, London. New York, 376 p

    Google Scholar 

  41. Barich DH, Pugmire RJ, Grant DM (2001) Investigation of the structural conformation of biphenyl by solid state 13C NMR and quantum chemical NMR shift calculations. J Phys Chem A 105:6780–6784

    Article  CAS  Google Scholar 

  42. Hadad C, Achelle S, Garcia-Martinez JC, Rodriguez-Lopez J (2011) 4-arylvinyl-2,6-di(pyridine-2-yl)pyrimidines: synthesis and optical properties. J Org Chem 76:3837–3845

    Article  CAS  PubMed  Google Scholar 

  43. Achelle S, Nouira I, Pfaffinger B, Ramondene Y, Ple N, Rodriguez-Lopez J (2009) V-shaped 4,6-Bis(arylvinyl)pyrimidine oligomers: synthesis and optical properties. J Org Chem 74:3711–3717

    Article  CAS  PubMed  Google Scholar 

  44. Ooyama Y, Nagano T, Inoue S, Imae I, Komaguchi K, Ohshita J, Harima Y (2011) Dye-sensitized solar cells based on donor-π-acceptor fluorescent dyes with a pyridine ring as an electron-withdrawing-injecting anchoring group. Chem Eur J 17:14837–14843

    Article  CAS  PubMed  Google Scholar 

  45. Ooyama Y, Inoue S, Nagano T, Kushimoto K, Ohshita J, Imae I, Komaguchi K, Harima Y (2011) Dye-sensitized solar cells based on donor-acceptor π-conjugated fluorescent dyes with a pyridine ring as an electron-withdrawing anchoring group. Angew Chem Int Ed 50:7429–7433

    Article  CAS  Google Scholar 

  46. Ooyama Y, Harima Y (2012) Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. Chem Phys Chem 13:4032–4080

    CAS  PubMed  Google Scholar 

  47. Ooyama Y, Yamaguchi N, Imae I, Komaguchi K, Ohshita J, Harima Y (2013) Dye-sensitized solar cells based on D-π-A fluorescent dyes with two pyridyl groups as an electronwithdrawing-injecting anchoring group. Chem Commun 49:2548–2550

    Article  CAS  Google Scholar 

  48. Harima Y, Fujita T, Kano Y, Imae I, Komaguchi K, Ooyama Y, Ohshita J (2013) Lewis-acid sites of TiO2 surface for adsorption of organic dye having pyridyl group as anchoring unit. J Phys Chem C 117:16364–16370

    Article  CAS  Google Scholar 

  49. Lu J, Xu X, Li Z, Cao K, Cui J, Zhang Y, Shen Y, Li Y, Zhu J, Dai S, Chen W, Cheng Y, Wang M (2013) Zinc porphyrins with a pyridine-ring-anchoring group for dye-sensitized solar cells. Chem Asian J 8:956–962

    Article  CAS  PubMed  Google Scholar 

  50. Ooyama Y, Hagiwara Y, Mizumo T, Harima Y, Ohshita J (2013) Photovoltaic performance of dye-sensitized solar cells based on D-π-A type BODIPY dye with two pyridyl groups. New J Chem 37:2479–2485

    Article  CAS  Google Scholar 

  51. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (research projects No. 13-03-96049-r_ural_a, 13-03-12434 ofi_м2, 13-03-90606-Arm_a, 14-03-01017-А, 14-03-00479-А and 14-03-31040-mol_а, 13-03-12415), the Council on Grants at the President of the Russian Federation (Program of State Support for Leading Scientific Schools of the Russian Federation and Young Scientists, Grant MK-3939.2014.3). N.I. Makarova, I.V. Dorogan, A.V. Metelitsa and V.I. Minkin would like to acknowledge the financial support of absorption, fluorescence and quantum chemical studies from the Ministry of Education and Science of Russian Federation in the framework of the State Assignment for Research project № 1895.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor V. Verbitskiy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 12653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbitskiy, E.V., Schepochkin, A.V., Makarova, N.I. et al. Synthesis, Photophysical and Redox Properties of the D–π–A Type Pyrimidine Dyes Bearing the 9-Phenyl-9H-Carbazole Moiety. J Fluoresc 25, 763–775 (2015). https://doi.org/10.1007/s10895-015-1565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1565-6

Keywords

Navigation