Skip to main content
Log in

Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, we report microwave-assisted, one-stage synthesis of high-quality functionalized water-soluble cadmium telluride (CdTe) quantum dots (QDs). By selecting sodium tellurite as the Te source, cadmium chloride as the Cd source, mercaptosuccinic acid (MSA) as the capping agent, and a borate-acetic acid buffer solution with a pH range of 5–8, CdTe nanocrystals with four colors (blue to orange) were conveniently prepared at 100 °C under microwave irradiation in less than one hour (reaction time: 10–60 min). The influence of parameters such as the pH, Cd:Te molar ratio, and reaction time on the emission range and quantum yield percentage (QY%) was investigated. The structures and compositions of the prepared CdTe QDs were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and X-ray powder diffraction experiments. The formation mechanism of the QDs is discussed in this paper. Furthermore, AS1141-aptamer-conjugated CdTe QDs in the U87MG glioblastoma cell line were assessed with a fluorescence microscope. The obtained results showed that the best conditions for obtaining a high QY of approximately 87 % are a pH of 6, a Cd:Te molar ratio of 5:1, and a 30-min reaction time at 100 °C under microwave irradiation. The results showed that AS1141-aptamer-conjugated CdTe QDs could enter tumor cells efficiently. It could be concluded that a facile high-fluorescence-strength QD conjugated with a DNA aptamer, AS1411, which can recognize the extracellular matrix protein nucleolin, can specifically target U87MG human glioblastoma cells. The qualified AS1411-aptamer-conjugated QDs prepared in this study showed excellent capabilities as nanoprobes for cancer targeting and molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim J, Wong CY, Scholes GD (2009) Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc Chem Res 42(8):1037–1046

    Article  CAS  PubMed  Google Scholar 

  2. Klimov VI (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490):314–317

    Article  CAS  PubMed  Google Scholar 

  3. Jung HJ, Dasgupta NP, Van Stockum PB, Koh AL, Sinclair R, Prinz FB (2013) Spatial variation of available electronic excitations within individual quantum dots. Nano Lett 13(2):716–721

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Liu Z, Lian T (2013) Bulk transport and interfacial transfer dynamics of photogenerated carriers in CdSe quantum dot solid electrodes. Nano Lett 13(8):3678–3683

    Article  CAS  PubMed  Google Scholar 

  5. Tisdale WA, Zhu XY (2011) Artificial atoms on semiconductor surfaces. Proc Natl Acad Sci U S A 108(3):965–970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396(1):229–240

    Article  CAS  PubMed  Google Scholar 

  8. Vinayaka AC, Thakur MS (2010) Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem 397(4):1445–1455

    Article  CAS  PubMed  Google Scholar 

  9. Zhu Y, Hong H, Xu ZP, Li Z, Cai W (2013) Quantum dot-based nanoprobes for in vivo targeted imaging. Curr Mol Med 13(10):1549-1567

  10. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto, Calif) 6:143–162

    Article  CAS  Google Scholar 

  11. Adegoke O, Nyokong T (2013) Unsymmetrically substituted nickel triazatetra-benzcorrole and phthalocynanine complexes: conjugation to quantum dots and applications as fluorescent “Turn ON” Sensors. J Fluoresc doi:10.1007/s10895-013-1317-4

  12. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28(31):4717–4732

    Article  CAS  PubMed  Google Scholar 

  13. Jin T, Fujii F, Sakata H, Tamura M, Kinjo M (2005) Calixarene-coated water-soluble CdSeZnS Semiconductor quantum dots that are highly fluorescent and stable in aqueous solution. Chem Commun 22:2829–2831

  14. Gill R, Willner I, Shweky I, Banin U (2005) Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. J Phys Chem 109:23715–23719

    Article  CAS  Google Scholar 

  15. Stsiapura V, Sukhanova A, Baranov A, Artemyev M, Kulakovich O, Oleinikov V, Pluot M, Cohen JHM (2006) Nabiev I (2006) DNA assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals. Nanotechnology 17:581

    Article  CAS  Google Scholar 

  16. Abd El-sadek MS, Nooralden AY, Babu SM, Palanisamy PK (2011) Influence of different stabilizers on the optical and nonlinear optical properties of CdTe nanoparticles. Opt Commun 284:2900–2904

    Article  CAS  Google Scholar 

  17. Vinayaka AC, Thakur MS (2011) Photo-absorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight towards QD-biomolecular interactions. Bioconjug Chem 22:968–975

    Article  CAS  PubMed  Google Scholar 

  18. Algar WR, Krull UJ (2011) Characterization of the adsorption of oligonucleotides on mercaptopropionic acid-coated CdSe/ZnS quantum dots using fluorescence resonance energy transfer. J Colloid Interface Sci 359:148–154

    Article  PubMed  Google Scholar 

  19. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655

    Article  CAS  Google Scholar 

  20. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals, an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    Article  CAS  Google Scholar 

  21. Susha AS, Javier AM, Parak WJ, Rogach AL (2006) Luminescent CdTe QDs as ion probes and pH sensors in aqueous solutions. Colloids Surf A Physicochem Eng Asp 281:40–43

    Article  CAS  Google Scholar 

  22. Yuan JP, Guo WW, Wang EK (2008) Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal Chem 80:1141–1145

    Article  CAS  PubMed  Google Scholar 

  23. Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury(II). Talanta 75:215–221

    CAS  PubMed  Google Scholar 

  24. Xia YS, Zhu CQ (2008) Two distinct photoluminescence responses of CdTe quantum dots to Ag(I). J Lumin 128:166–172

    Article  CAS  Google Scholar 

  25. Zhang H, Wang LP, Xiong HM, Hu LH, Yang B, Li W (2003) Hydrothermal synthesis for high quality CdTe QDs. Adv Mater 15(1712):1715

    Google Scholar 

  26. Li L, Qian HF, Ren JC (2005) Rapid synthesis of highly luminescent CdTe QDs in the aqueous phase by microwave irradiation with controllable temperature. Chem Commun 8:528–530

    Article  Google Scholar 

  27. Qian HF, Dong CQ, Weng JF, Ren JC (2006) Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe QDs. Small 2:747–751

    Article  CAS  PubMed  Google Scholar 

  28. He Y, Sai LM, Lu HT, Hu M, Lai WY, Fan QL, Wang LH, Huang W (2007) Microwave-assisted synthesis of water-dispersed CdTe QDs with high luminescent efficiency and narrow size distribution. Chem Mater 19:359–365

    Article  CAS  Google Scholar 

  29. He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) Synthesis of CdTe QDs through program process of microwave irradiation. J Phys Chem B 110:13352–13356

    Article  CAS  PubMed  Google Scholar 

  30. Gautam UK, Rao CNR (2004) Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J Mater Chem 14:2530–2535

    Article  CAS  Google Scholar 

  31. Zhu JJ, Wang H, Zhu JM, Wang J (2002) A rapid synthesis route for the preparation of CdS nanoribbons by microwave irradiation. Mater Sci Eng B-Solid State Mater AdvTechnol 94:136–140

    Article  Google Scholar 

  32. Huang L, Han HY (2010) Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters. Mater Lett 64:1099–1101

    Article  CAS  Google Scholar 

  33. Zhou DJ, Piper JD, Abell C, Klenerman D, Kang DJ, Ying LM (2005) Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem Commun 38:4807–4809.

  34. Kim JH, Morikis D, Ozkan M (2004) Adaptation of inorganic quantum dots for stable molecular beacons. Sensors Actuators B 102:315–319

    Article  CAS  Google Scholar 

  35. Barroso MM (2011) Quantum Dots in Cell Biology. J Histochem Cytochem 59(3):237–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ying E, Li D, Guo S, Dong S, Wang J (2008) Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals. PLoS ONE 3(5):e2222

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mongelard F, Bouvet P (2010) AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther 12(1):107–114

    CAS  PubMed  Google Scholar 

  38. Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. A review. J Phys Chem 75:991–1024

    Article  Google Scholar 

  39. Sheng W, Chen T, Kamath R, Xiong X, Tan W, Fan ZH (2012) Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal Chem 84(9):4199–4206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  41. Liu Y, Shen Q, Yu D, Shi W, Li J, Zhou J, Liu X (2008) A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature. Nanotechnology 19(24):245601

    Article  PubMed  Google Scholar 

  42. Sai LM, Kong XY (2011) Microwave-assisted synthesis of water-dispersed CdTe/CdSe core/shell type II quantum dots. Nanoscale Res Lett 6:399–405

    Article  PubMed Central  PubMed  Google Scholar 

  43. Zhou D, Lin M, Chen ZL, Sun HZ, Zhang H, Sun HC, Yang B (2011) Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater 23(21):4857–4862

    Article  CAS  Google Scholar 

  44. Bao HF, Wang EK, Dong SJ (2006) One-pot synthesis of CdTe QDs and shape control of luminescent CdTe–cystine nanocomposites. Small 2(476):480

    Google Scholar 

  45. Shen M, Jia W, You Y, Hu Y, Li F, Tian S, Li J, Jin Y, Han D (2013) Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly. Nanoscale Res Lett 8(1):253

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ge C, Xu M, Liu J, Lei J, Ju H (2008) Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor. Chem Commun 4:450–452

    Article  Google Scholar 

  47. Park JY, Park JP, Hwang CH, Kim J, Chio MH, Ok KM, Kwak HY, Shim IW (2009) The synthesis of CuInS2 nanoparticles by a simple sonochemical method. Bull Korean Chem Soc 30(11):2713

    Article  CAS  Google Scholar 

  48. Howarth M, Takao K, Hayashi Y, Ting AY (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:7583–7588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  50. He X, Gao L, Ma N (2013) One-step instant synthesis of protein-conjugated quantum dots at room temperature. Sci Rep 3:2825. doi:10.1038/srep02825

    PubMed Central  PubMed  Google Scholar 

  51. Zhang J, Jia X, Lv XJ, Deng YL, Xie HY (2010) Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta 81(1–2):505–509

    Article  CAS  PubMed  Google Scholar 

  52. Mongelard F, Bouvet P (2010) AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther 12(1):107–114

    CAS  PubMed  Google Scholar 

  53. Chen XC, Deng YL, Lin Y, Pang DW, Qing H, Qu F, Xie HY (2008) Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology 19(23):235105

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support received from the Research Council of Mashhad University of Medical Sciences (No. 910040).

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Hadizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alibolandi, M., Abnous, K., Ramezani, M. et al. Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells. J Fluoresc 24, 1519–1529 (2014). https://doi.org/10.1007/s10895-014-1437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1437-5

Keywords

Navigation